Math, asked by kambleanved123, 7 months ago

solve the following quadratic equation by factorisation
3x^2-2√6x+2=0​

Answers

Answered by suzanejazinth
1

Answer:

3x²-2√6x+2=0

a²-2ab+b²=(a-b)²

a=√3x      b=√2      2ab= 2×√3x×√2=2√6x

3x²-2√6x+2=(√3x-√2)²

(√3x-√2)(√3x-√2)=0

√3x-√2=0

√3x=√2

x=√2/√3

Answered by prince5132
14

GIVEN :-

  • A quadratic equation = 3x² - 2√6x + 2 = 0.

TO FIND :-

  • Zeros of given quadratic equation.

SOLUTION :-

 \\ :  \implies \displaystyle \sf  \: 3x ^{2}  - 2\sqrt{6} x + 2 = 0 \\  \\

   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tiny{ \dag \displaystyle \sf  \:By \:  splitting  \: the  \: middle  \: term  \: of  \: quadratic  \: equation.} \\  \\

 :  \implies \displaystyle \sf  3x ^{2}  -  \sqrt{6} x -  \sqrt{6} x + 2 = 0 \\  \\

Here we can write , 3x² as (√3x)(√3x) and √6x as (√3x)(-√2) and 2 as √2 × √2.

 \\  \\  :  \implies \displaystyle \sf  \:  \sqrt{3}x \bigg( \sqrt{3} x -  \sqrt{2}  \bigg)-\sqrt{2}\bigg( \sqrt{3} x -  \sqrt{2 }  \bigg) = 0 \\  \\  \\

 :  \implies \displaystyle \sf   \bigg( \sqrt{3} x -  \sqrt{2}  \bigg) \bigg( \sqrt{3} x -  \sqrt{2}  \bigg) = 0 \\  \\  \\

 :  \implies \displaystyle \sf  \bigg( \sqrt{3} x -  \sqrt{2}  \bigg) = 0 \: ,\bigg( \sqrt{3} x -  \sqrt{2}  \bigg) = 0  \\  \\  \\

 :  \implies \displaystyle \sf  \sqrt{3}x = 0 +  \sqrt{2} \:   , \:  \sqrt{3} x = 0 + 2 \\  \\  \\

 :  \implies \displaystyle \sf  \sqrt{3}x =  \sqrt{2}  \:  , \:  \sqrt{3} x =  \sqrt{2}  \\  \\  \\

 :  \implies \underline{ \boxed{ \displaystyle \sf \: x =  \frac{ \sqrt{3} }{ \sqrt{2} }   \: , \: x =  \frac{ \sqrt{3} }{ \sqrt{2} } }}

Similar questions