solve the following quadratic equation by factorisation and check the solutions
a(x^2+1) = x(a^2+1)
Answers
Answered by
28
Given,
⇒ a( x² + 1 ) = x( a² + 1 )
⇒ ax² + a = a²x + x
⇒ ax² + a - a²x - x = 0
⇒ ax² - a²x - x + a = 0
Taking out ax common from first 2 terms, and -1 from last 2 terms,
⇒ ax( x - a ) - 1( x - a ) = 0
Taking out ( x - a ) common,
⇒ ( x - a ) ( ax - 1 ) = 0
⇒ ( x - a ) = 0 ÷ ( ax - 1 )
⇒ ( x - a ) = 0
•°• x = a
" Or "
⇒ ( x - a ) ( ax - 1 ) = 0
⇒ ( ax - 1 ) = 0 ÷ ( x - a )
⇒ ( ax - 1 ) = 0
⇒ ax = 1
•°• x = ( 1/a )
Hence, x = a or ( 1/a ).
Check :
When , x = a
⇒a( x² + 1 ) = x( a² + 1 )
Substitute the value of x = a,
⇒ a( a² + 1 ) = a( a² + 1 )
⇒ a³ + 1 = a³ + 1
When, x = ( 1/a ),
⇒ a( x² + 1 ) = x( a² + 1 )
Substitute the value of x = ( 1/a ),
⇒ a[ ( 1/a )² + 1 ] = ( 1/a ) ( a² + 1 )
⇒ a[ ( 1/a² ) + 1 ] = ( 1/a ) × a² + 1( 1/a )
⇒ a( 1/a² ) + a = ( a²/a ) + ( 1/a )
⇒ ( a/a² ) + a = a + ( 1/a )
⇒ ( 1/a ) + a = a + ( 1/a )
By commutative property of addition,
⇒ a + ( 1/a ) = a + ( 1/a )
Checked !!
The required answer is ( a ) and ( 1/a ).
⇒ a( x² + 1 ) = x( a² + 1 )
⇒ ax² + a = a²x + x
⇒ ax² + a - a²x - x = 0
⇒ ax² - a²x - x + a = 0
Taking out ax common from first 2 terms, and -1 from last 2 terms,
⇒ ax( x - a ) - 1( x - a ) = 0
Taking out ( x - a ) common,
⇒ ( x - a ) ( ax - 1 ) = 0
⇒ ( x - a ) = 0 ÷ ( ax - 1 )
⇒ ( x - a ) = 0
•°• x = a
" Or "
⇒ ( x - a ) ( ax - 1 ) = 0
⇒ ( ax - 1 ) = 0 ÷ ( x - a )
⇒ ( ax - 1 ) = 0
⇒ ax = 1
•°• x = ( 1/a )
Hence, x = a or ( 1/a ).
Check :
When , x = a
⇒a( x² + 1 ) = x( a² + 1 )
Substitute the value of x = a,
⇒ a( a² + 1 ) = a( a² + 1 )
⇒ a³ + 1 = a³ + 1
When, x = ( 1/a ),
⇒ a( x² + 1 ) = x( a² + 1 )
Substitute the value of x = ( 1/a ),
⇒ a[ ( 1/a )² + 1 ] = ( 1/a ) ( a² + 1 )
⇒ a[ ( 1/a² ) + 1 ] = ( 1/a ) × a² + 1( 1/a )
⇒ a( 1/a² ) + a = ( a²/a ) + ( 1/a )
⇒ ( a/a² ) + a = a + ( 1/a )
⇒ ( 1/a ) + a = a + ( 1/a )
By commutative property of addition,
⇒ a + ( 1/a ) = a + ( 1/a )
Checked !!
The required answer is ( a ) and ( 1/a ).
kavya139:
nyc ans dear!!☺☺
Answered by
22
a( x² + 1 ) = x( a² + 1 )
=> ax² + a = xa² + x
=> ax² - xa² + a - x = 0
=> ax( x - a ) - (- a + x ) = 0
=> ax( x - a ) - ( x - a ) = 0
=> ( x - a ) ( ax - 1 ) = 0
For checking,
Taking ( x = a ),
=> a( x² + 1 ) = x( a² + 1 )
=> a( a² + 1 ) = a( a² + 1 )
=> a³ + a = a³ + a
=> 0 = 0
Taking ( x = 1/a)
=> a( x² + 1 ) = x( a² + 1 )
=> a( 1/a² + 1 ) = 1/a ( a² + 1 )
=> a( 1 + a² )/a² = ( a² + 1 )/a
=> ( 1 + a² )/a = ( a² + 1 )/a
=> 0 = 0
Hence, checked that our solution is correct.
=> ax² + a = xa² + x
=> ax² - xa² + a - x = 0
=> ax( x - a ) - (- a + x ) = 0
=> ax( x - a ) - ( x - a ) = 0
=> ( x - a ) ( ax - 1 ) = 0
For checking,
Taking ( x = a ),
=> a( x² + 1 ) = x( a² + 1 )
=> a( a² + 1 ) = a( a² + 1 )
=> a³ + a = a³ + a
=> 0 = 0
Taking ( x = 1/a)
=> a( x² + 1 ) = x( a² + 1 )
=> a( 1/a² + 1 ) = 1/a ( a² + 1 )
=> a( 1 + a² )/a² = ( a² + 1 )/a
=> ( 1 + a² )/a = ( a² + 1 )/a
=> 0 = 0
Hence, checked that our solution is correct.
Similar questions
Computer Science,
7 months ago
Science,
7 months ago
English,
7 months ago
Math,
1 year ago
Chemistry,
1 year ago
Social Sciences,
1 year ago