Math, asked by shifzmemon666, 10 months ago

solve the following quadratic equation by factorization method x^-17x+60=0​

Answers

Answered by Anonymous
12

{\red{\underline{\underline{\bold{Given:-}}}}}

  • {x}^{2} -17x +60 = 0

{\blue{\underline{\underline{\bold{To\:Find:-}}}}}

  • The value of x

{\green{\underline{\underline{\bold{Solution:-}}}}}

{x}^{2} - 17x + 60 = 0 \\ \\</p><p></p><p>\implies {x}^{2} -12x-5x + 60 = 0 \\ \\</p><p></p><p>\implies x(x-12) - 5(x-12) = 0 \\ \\</p><p></p><p>\implies (x-12) (x-5) \\ \\</p><p></p><p>x-12 = 0 \: (or) \: x-5 = 0 \\ \\</p><p></p><p>x = 12 \: (or) x = 5

_________________

{\pink{\underline{\underline{\bold{Answer\:Verification:-}}}}}

Case 1:-

Substitute x = 12 in {x}^{2} -17x +60 = 0

\implies {12}^{2} - 17(12) + 60 = 0 \\ \\</p><p></p><p>\implies 144 - 204 +60 = 0 \\ \\</p><p></p><p>\implies0 = 0

L.H.S = R.H.S

Case 2:-

Substitute x = 5 in {x}^{2} -17x +60 = 0

\implies {5}^{2} - 17(5) + 60 = 0 \\ \\</p><p></p><p>\implies 25 - 85 +60 = 0 \\ \\</p><p></p><p>\implies0 = 0

L.H.S = R.H.S

Hence, verified

Similar questions