Math, asked by harshkamble9418, 11 months ago

solve the following quadratic equation by factorization method 5t2-12t-20=0​

Answers

Answered by amitkumar44481
3

SolutioN :

We have, Equation.

 \tt \dagger \:  \:  \:  \:  \: 5 {t}^{2}  - 12t - 20 =0 .

✡ Compare With General Equation.

 \tt \dagger \:  \:  \:  \:  \: a {x}^{2} + bx + c  =0 .

Where as,

  • a = 5.
  • b = - 12.
  • c = - 20.

☛ Let's Find Roots :

 \tt \dagger \:  \:  \:  \:  \:\fbox{ D = b^2-4ac.}

Where as,

  • D Discriminate.

 \tt  : \implies D =  {  \big(- 12 \big)}^{2}  - 4 \times 5 \times  - 20

 \tt  : \implies D =  144 + 400.

 \tt  : \implies D =  544 .

Now,

✎ We have, Quadratic Formula.

 \tt \dagger \:  \:  \:  \:  \:\fbox{ x =  \dfrac{-b\pm \sqrt{ {b}^{2}-4ac } }{2a} }

 \tt :  \implies x =  \dfrac{12\pm \sqrt{ D} }{2 \times 5}

 \tt  : \implies x =  \dfrac{12\pm \sqrt{ 544} }{10}

Therefore, the value Of x is 12 ± √544 /10.

Similar questions