Math, asked by rahulwk9234, 5 days ago

Solve the following quadratic equation by factorization: \frac { a } { x - b } + \frac { b } { x - a } = 2 , x \neq a , b x−b a ​ + x−a b ​ =2,x  ​ =a,b.

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given quadratic equation is

\rm :\longmapsto\:\dfrac{a}{x - b}  + \dfrac{b}{x - a}  = 2

can be rewritten as

\rm :\longmapsto\:\dfrac{a}{x - b}  + \dfrac{b}{x - a} - 2 = 0

can be rewritten as

\rm :\longmapsto\:\dfrac{a}{x - b}  + \dfrac{b}{x - a} - 1 - 1 = 0

can be re-arranged as

\rm :\longmapsto\:\bigg[\dfrac{a}{x - b} - 1\bigg]  + \bigg[\dfrac{b}{x - a} - 1\bigg]= 0

\rm :\longmapsto\:\bigg[\dfrac{a - (x - b)}{x - b}\bigg]  + \bigg[\dfrac{b - (x - a)}{x - a}\bigg]= 0

\rm :\longmapsto\:\bigg[\dfrac{a - x  +  b}{x - b}\bigg]  + \bigg[\dfrac{b - x  +  a}{x - a}\bigg]= 0

can further rewritten as after taking common,

\rm :\longmapsto\:(a + b - x)\bigg[\dfrac{1}{x - a}  + \dfrac{1}{x - b} \bigg] = 0

\rm :\longmapsto\:(a + b - x)\bigg[\dfrac{x - b + x - a}{(x - a)(x - b)}  \bigg] = 0

\rm :\longmapsto\:(a + b - x)\bigg[\dfrac{2x - b - a}{(x - a)(x - b)}  \bigg] = 0

\rm :\longmapsto\:a + b - x = 0 \:  \:  \: or \:  \:  \: 2x - a - b = 0

\bf\implies \:x = a + b \:  \:  \: or \:  \:  \: x = \dfrac{a + b}{2}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions