Math, asked by BrainlyHelper, 1 year ago

Solve the following quadratic equation by factorization: \frac{a}{x-b}+\frac{b}{x-a}=2

Answers

Answered by nikitasingh79
4

SOLUTION :  

Given : a/(x - b) + b/(x - a) = 2  

[a(x - a) + b(x - b)]/ (x - b) (x - a) = 2

[ By taking LCM]

[ax - a² + bx - b²]  / [x² - ax -  bx + ab] = 2

[ax - a² + bx - b²]  = 2  [x² - ax -  bx + ab]  

[ax - a² + bx - b²]  = 2 x² - 2ax -  2bx + 2ab

2x² - 2ax - 2bx + 2ab - ax + a² - bx + b² = 0

2x² - 2ax - ax - 2bx - bx + a² + b² + 2ab =0

2x² + x [ - 2a - a - 2b - b ] + a² + b² + 2ab =  

2x² + x [ - 3a  - 3b ] + a² + b² + 2ab = 0

2x² - 3x [ a  + b ] + ( a + b)² = 0

2x² - 2(a + b) x - (a + b) x +( a + b)² = 0

2x(x -(a + b) - (a + b) (x - (a + b) = 0

(2x - (a + b)) (x - (a + b) = 0

(2x - (a + b))  = 0  or  (x - (a + b) = 0

2x = (a + b)  or  x = (a + b)  

x = (a + b)/2  or x = (a + b)

Hence, the roots of the quadratic equation a/(x - b) + b/(x - a) = 2   are  (a + b)/2  & (a + b) .

★★ METHOD TO FIND SOLUTION OF a quadratic equation by FACTORIZATION METHOD :  

We first write the given quadratic polynomial as product of two linear factors by splitting the middle term and then equate each factor to zero to get desired roots of given quadratic equation.

HOPE THIS ANSWER WILL HELP YOU….

Answered by Anonymous
5

Solution :

Factorization method :

\frac{a}{x-b}+\frac{b}{x-a}=2


=\:>\frac{a(x-a)+b(x-b)}{(x-a)(x-b)}=2


=\:> a(x-a)+b(x-b)=2(x-a)(x-b)


=\:>ax-a^2+bx-b^2=2(x^2-ax-bx+ab)


=\:>ax-a^2+bx-b^2=2x^2-2ax-2bx+2ab


=\:> 3ax+3bx-2x^2-2ab-a^2-b^2=0


=\:>x(3a+3b)-2x^2-(a^2+b^2+2ab)=0


=\:>-2x^2+x(3a+3b)-(a^2+ab+ab+b^2=0


=\:>-2x^2+x(3a+3b)-(a(a+b)+b(a+b))=0


=\:>-2x^2+x(3a+3b)-(a+b)(a+b)=0


=\:>2x^2-3x ( a+ b )+ ( a + b)^2=0


=\:>2x^2 - 2(a + b)x - (a + b) x +( a + b)^2 = 0


=\:>2x(x-(a + b) - (a + b) (x - (a + b)=0


=\:>(2x - (a + b)) (x - (a + b) = 0


=\:>(2x -(a + b)) =0\:or\:(x - (a + b) = 0


=\:>2x = (a + b)\:or\: x = (a + b)


=\:>x=\frac{a+b}{2}\:or\:x=(a+b)



Quadratic method ( not in question ) :

\textsf{Comparing with }\mathsf{ax^2+bx+c=0\:we\:get:}


a=-2  ======= > ( 1 )

b=(3a+3b)  ======= > ( 2 )

c=-(a+b)(a+b)  ======= > ( 3 )


\triangle=b^2-4ac


=\:> (3a+3b)^2-4\times-(a+b)(a+b)\times(-2)


=\:> 9a^2+9b^2+18ab-8(a+b)^2


=\:> 9a^2+9b^2+18ab-8(a^2+b^2+2ab)


=\:>9a^2+9b^2+18ab-(8a^2+8b^2+16ab)


=\:> 9a^2+9b^2+18ab-8a^2-8b^2-16ab

=\:> a^2+b^2+2ab

=\:> a^2+ab+ab+b^2

=\:> a(a+b)+b(a+b)

=\:>(a+b)(a+b)

=\:> (a+b)^2 ======= > ( 4 )


Quadratic Formula


x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

x=\frac{-b\pm\sqrt{\triangle}}{2a}

From ( 4 ) :

=\:> \frac{-b\pm\sqrt{(a+b)^2}}{2a}

=\:> \frac{-b\pm(a+b)}{2a}

From ( 1 ) and ( 2 ) :

=\:> \frac{-(3a+3b)\pm(a+b)}{2\times(-2)}

=\:> \frac{-3a-3b\pm(a+b)}{-4}


Either :

=\:> \frac{-3a-3b+a+b}{-4}

=\:> \frac{-2a-2b}{-4}

=\:> \frac{(-2)(a+b)}{-4}

=\:> \frac{a+b}{2}


Or:

=\:> \frac{-3a-3b-(a+b)}{-4}

=\:> \frac{-4a-4b}{-4}

=\:> \frac{-4(a+b)}{-4}

=\:> a+b


ANSWER :


The zeroes of the quadratic equation are :


\mathsf{Either\:\:\boxed{\frac{a+b}{2}}}\\\\\\\mathsf{Or\:\:\boxed{a+b}}


Hope its helpful !

___________________________________________________________________


nalinsingh: Awesome Answer Brother ! Keep up the Good work.
Anonymous: thanka :-)
Anonymous: thanks bhai :-)
Similar questions
Math, 1 year ago