Math, asked by rajaparihar777, 3 months ago

Solve the following quadratic equation by Formula method:
X^2-3√3 x + 6 = 0​

Answers

Answered by anindyaadhikari13
2

Solution:

Given equation,

 \tt {x}^{2} - 3 \sqrt{3} x + 6 = 0

We have to find out the roots of the given equation by quadratic formula.

So, comparing with ax² + bx + c = 0, we get,

  • a = 1
  • b = -3√3
  • c = 6

So,

 \tt \implies x =  \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}

 \tt \implies x =  \dfrac{3 \sqrt{3} \pm \sqrt{ {( - 3 \sqrt{3} )}^{2} - 4 \times 1 \times 6 } }{2}

 \tt \implies x =  \dfrac{3 \sqrt{3} \pm \sqrt{27 -24 }}{2}

 \tt \implies x =  \dfrac{3 \sqrt{3} \pm \sqrt{3}}{2}

Thus,

 \tt \implies x_{1}=  \dfrac{3 \sqrt{3} + \sqrt{3}}{2}  =  \dfrac{4 \sqrt{3} }{2}  = 2 \sqrt{3}

 \tt \implies x_{2}=  \dfrac{3 \sqrt{3}  -  \sqrt{3}}{2}  =  \dfrac{2 \sqrt{3} }{2}  =  \sqrt{3}

So, the roots of the given quadratic equation are 2√3 and √3.

Answer:

  • x = √3, 2√3

•••♪

Similar questions