Math, asked by Anonymous, 10 months ago

Solve the following quadratic equation by quadratic formula. 2x square +5√3x +6 =0​

Answers

Answered by sharmaminakshi89
1

Answer:

Hope the uploaded pic answers your question. Happy to help!

Please mark it as brainliest

Step-by-step explanation:

Attachments:
Answered by Anonymous
2

\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{Roots \ are \ -2\sqrt3 \ and \ \frac{-\sqrt3}{2}}

\orange{Given:}

\sf{The \ given \ quadratic \ equation \ is}

\sf{\implies{2x^{2}+5\sqrt3x+6=0}}

\pink{To \ find:}

\sf\green{\underline{\underline{Solution:}}}

\sf{\implies{2x^{2}+5\sqrt3x+6=0}}

\sf{Here,}

\sf{a=2}

\sf{b=5\sqrt3}

\sf{c=6}

\sf{By \ formula \ method}

\sf{b^{2}-4ac=(5\sqrt3)^{2}-4(2)(6)}

\sf{=75-48}

\sf{=27}

\sf{x=\frac{-b-\sqrt(b^{2}-4ac)}{2a} \ or \ \frac{-b+\sqrt(b^{2}-4ac)}{2a}}

\sf{x=\frac{-5\sqrt3-\sqrt27}{2×2} \ or \ \frac{-5\sqrt3+\sqrt27}{2×2}}

\sf{x=\frac{-5\sqrt3-3\sqrt3}{4} \ or \ \frac{-5\sqrt3+3\sqrt3}{4}}

\sf{x=\frac{-8\sqrt3}{4} \ or \ \frac{-2\sqrt3}{4}}

\sf{x=-2\sqrt3 \ or \ \frac{-\sqrt3}{2}}

\sf\purple{\tt{\therefore{Roots \ are \ -2\sqrt3 \ and \ \frac{-\sqrt3}{2}}}}

Similar questions