Math, asked by harshadanilame2007, 1 month ago

solve the following quadratic equation by using formula method . 5x²-13+ 8 =0​

Answers

Answered by varadad25
4

Answer:

\displaystyle{\boxed{\red{\sf\:x\:=\:\dfrac{8}{5}}}\sf\:\quad\:OR\:\quad\:\boxed{\red{\sf\:x\:=\:1\:}}}

Step-by-step-explanation:

The given quadratic equation is 5x² - 13x + 8 = 0.

We have to find the roots of the quadratic equation by using formula method.

Now, comparing the given equation with ax² + bx + c = 0, we get,

5x² - 13x + 8 = 0

  • a = 5
  • b = - 13
  • c = 8

Now, we know that,

\displaystyle{\pink{\sf\:x\:=\:\dfrac{-\:b\:\pm\:\sqrt{b^2\:-\:4ac}}{2a}}\sf\:\qquad\cdots[\:Quadratic\:formula\:]}

\displaystyle{\implies\sf\:x\:=\:\dfrac{-\:(\:-\:13\:)\:\pm\:\sqrt{(\:-\:13\:)^2\:-\:4\:\times\:5\:\times\:8}}{2\:\times\:5}}

\displaystyle{\implies\sf\:x\:=\:\dfrac{13\:\pm\:\sqrt{169\:-\:4\:\times\:40}}{10}}

\displaystyle{\implies\sf\:x\:=\:\dfrac{13\:\pm\:\sqrt{169\:-\:160}}{10}}

\displaystyle{\implies\sf\:x\:=\:\dfrac{13\:\pm\:\sqrt{9}}{10}}

\displaystyle{\implies\sf\:x\:=\:\dfrac{13\:\pm\:3}{10}}

\displaystyle{\implies\sf\:x\:=\:\dfrac{13\:+\:3}{10}\:\quad\:OR\:\quad\:x\:=\:\dfrac{13\:-\:3}{10}}

\displaystyle{\implies\sf\:x\:=\:\dfrac{\cancel{16}}{\cancel{10}}\:\quad\:OR\:\quad\:x\:=\:\cancel{\dfrac{10}{10}}}

\displaystyle{\implies\:\underline{\boxed{\red{\sf\:x\:=\:\dfrac{8}{5}}}}\sf\:\quad\:OR\:\quad\:\underline{\boxed{\red{\sf\:x\:=\:1\:}}}}

Answered by MathCracker
13

Question :-

solve the following quadratic equation by using formula method . 5x²-13x + 8 =0

Solution :-

Given :

  • 5x² - 13x + 8 = 0

Need to find :

  • value of x

Using formula :

\rm:\longmapsto{x =  \frac{ - b \pm \sqrt{b {}^{2}  - 4ac} }{2a} } \\

Comparing the given equation with ax² + bx + c = 0.

  • a = 5
  • b = -13
  • c = 8

On using formula,

\rm:\longmapsto{ x =  \frac{ - ( - 13) \pm \sqrt{( - 13) {}^{2}  - 4(5)(8)} }{2(5)} } \\  \\ \rm:\longmapsto{x =  \frac{13 \pm \sqrt{169 - 160} }{10} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now,

 \small\rm:\longmapsto{x =  \frac{13 +  \sqrt{169 - 160} }{10}  \:  \:  \: or \:  \:  \: x =  \frac{13 -  \sqrt{169 - 160} }{10} } \\

Then,

\rm:\longmapsto{x =  \frac{13 +  \sqrt{9} }{10}  \:  \:  \: or \:  \:  \: x =  \frac{13 -  \sqrt{9} }{10} } \\  \\\rm:\longmapsto{x =  \frac{13 + 3}{10}  \:  \:    \:  or  \:  \:  \: x =  \frac{13 - 3}{10} }  \:  \:  \:  \:  \:  \:  \:  \\  \\ \rm:\longmapsto{x =  \frac{16}{10} \:  \:  \: or \:  \:  \: x =  \frac{10}{10}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ \rm:\longmapsto \boxed {\rm{x =  \frac{8}{5} \:  \:  \: or \:  \:  \: x =  1  }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn more from brainly :

solve the following quadratic equations by using quadratic formula method

I) 2x^2-11x+9=0

ii) 5x^2-9x-14=0

https://brainly.in/question/22226873

Similar questions