Accountancy, asked by KhushiThombare, 9 months ago

Solve the following quadratic equation (for commerce student)

x² – (5-i) x + (18+i) = 0 ​

Answers

Answered by stushruthi10497
2

Explanation:

We apply the Quadratic Formula and get,

x

=

(

5

i

)

±

(

5

i

)

2

4

(

18

+

i

)

2

,

i

.

e

.

,

x

=

(

5

i

)

±

{

(

25

10

i

1

)

72

4

i

}

2

,

or

,

x

=

(

5

i

)

±

48

14

i

2

,

x

=

(

5

i

)

±

i

48

+

14

i

2

...

...

...

...

...

...

...

...

.

.

(

)

.

So, to find

x

,

we need to find

48

+

14

i

.

Let,

u

+

i

v

=

48

+

14

i

;

u

,

v

R

.

(

u

+

i

v

)

2

=

u

2

+

2

i

u

v

v

2

=

48

+

14

i

.

Comparing the Real & Imaginary Parts, we have,

u

2

v

2

=

48

,

and

,

u

v

=

7

.

Now,

(

u

2

+

v

2

)

2

=

(

u

2

v

2

)

2

+

4

u

2

v

2

=

48

2

+

14

2

=

50

2

,

u

2

+

v

2

=

50

...

(

1

)

,

and

,

u

2

v

2

=

48

...

(

2

)

.

(

1

)

+

(

2

)

,

&

,

(

1

)

(

2

)

give,

u

=

7

,

v

=

1

.

48

+

14

i

=

7

+

i

.

Finally, from

(

)

,

we get,

x

=

(

5

i

)

±

i

(

7

+

i

)

2

,

i

.

e

.

,

x

=

2

+

3

i

,

or

,

x

=

3

4

i

,

are the desired roots!

Enjoy Maths.!

Similar questions