Math, asked by BrainlyProgrammer, 3 months ago

Solve the following Quadratic Equation
\bold{\texttt{Using Formula(Sridhara Acharyya's method)}}\\\tt x=\dfrac{-b\pm\sqrt{{b}^{2}-4ac}}{2a}\\ \\
 \large \bold{Question :  - } \\  \orange{ \tt \: a( {x}^{2}  + 1) = ( {a}^{2}  + 1)x \green{ \:  \:  \: , a \neq \: 0}}

Answers

Answered by assingh
42

Topic :-

Quadratic Equation

Given :-

\mathtt{a(x^2+1)=(a^2+1)x}

\mathtt{a \neq 0}

To Find :-

Value of 'x' using Quadratic formula which is commonly known as Shreedhara Acharya's formula.

Formula to be Used :-

Shreedhara Acharya's formula

Value of 'x' for a quadratic equation Ax² + Bx + C = 0 is given by,

\mathtt{x=\dfrac{-B\pm\sqrt{B^2-4AC}}{2A}}

Solution :-

\mathtt{a(x^2+1)=(a^2+1)x}

Open Brackets,

\mathtt{ax^2+a=a^2x+x}

Transpose (a²x + x) in LHS,

\mathtt{ax^2+a-a^2x-x=0}

Rearrange terms,

\mathtt{ax^2-a^2x-x+a=0}

\mathtt{ax^2-(a^2+1)x+a=0}

Compare this equation with general form of Quadratic Equation : Ax² + Bx + C = 0,

\mathtt{We\:can\:observe\:that,}

\mathtt{A=a}

\mathtt{B=-(a^2+1)}

\mathtt{C=a}

Apply formula,

\mathtt{x=\dfrac{-(-(a^2+1))\pm\sqrt{(-(a^2+1))^2-4(a)(a)}}{2a}}

\mathtt{x=\dfrac{(a^2+1)\pm\sqrt{(a^2+1)^2-4a^2}}{2a}}

\mathtt{(\because (-(a^2+1))^2=(a^2+1)^2)}

\mathtt{x=\dfrac{(a^2+1)\pm\sqrt{a^4+2a^2+1-4a^2}}{2a}}

\mathtt{(\because (x+y)^2=x^2+2xy+y^2)}

\mathtt{x=\dfrac{(a^2+1)\pm\sqrt{a^4-2a^2+1}}{2a}}

\mathtt{x=\dfrac{(a^2+1)\pm\sqrt{(a^2-1)^2}}{2a}}

\mathtt{(\because (x-y)^2=x^2-2xy+y^2)}

\mathtt{x=\dfrac{(a^2+1)\pm(a^2-1)}{2a}}

Case 1,

Take positive sign,

\mathtt{x=\dfrac{(a^2+1)+(a^2-1)}{2a}}

\mathtt{x=\dfrac{a^2+a^2+1-1}{2a}}

\mathtt{x=\dfrac{2a^2}{2a}}

\mathtt{x=a}

Case 2,

Take negative sign,

\mathtt{x=\dfrac{(a^2+1)-(a^2-1)}{2a}}

\mathtt{x=\dfrac{a^2+1-a^2+1}{2a}}

\mathtt{x=\dfrac{a^2-a^2+1+1}{2a}}

\mathtt{x=\dfrac{2}{2a}}

\mathtt{x=\dfrac{1}{a}}

Answer :-

So, value of x is

\mathtt{a\;or\;\dfrac{1}{a}.}


amansharma264: Excellent
Answered by OtakuSama
90

Question:-

Using the formula :-

 \\  \sf{ x=\dfrac{-b\pm\sqrt{{b}^{2}-4ac}}{2a}}\\ \\

Solve the following Quadratic Equation:-

 \\  \sf{ \bold{\: a( {x}^{2} + 1) = ( {a}^{2} + 1)x { \: \: \: , a \neq \: 0}}}

Required Answer:-

Given Equation:-

 \\   \sf{ \rightarrow{\: a( {x}^{2} + 1) = ( {a}^{2} + 1)x }} \\  \\

To Find:-

 \\  \sf{ \rightarrow{the \: value \: of \:  \bold{x}}} \\  \\

Solution:-

 \\    \sf{ \bold{\: a( {x}^{2} + 1) = ( {a}^{2} + 1)x }}

 \\  \sf{ \implies{a {x}^{2}  + a = ( {a}^{2}  + 1)x}}

 \\  \sf{ \implies{a {x}^{2}  + a - ( {a}^{2}  + 1)x = 0}}

 \\  \sf{ \implies{a {x}^{2}  - ( {a}^{2}  + 1)x + a = 0}}

 \\  \sf{ \implies{a {x}^{2}  + ( - a {}^{2}  - 1)x + a = 0}}

 \\  \rm{Comparing \: this \: equation \: with \:  \bold{a {x}^{2}  + bx + c = 0} \: we \: find:-}

 \\  \sf{ \bold{a} = a \:  , \:  \: \bold{b} = ( -  {a}^{2}  - 1) \:  and \:  \bold{c} = a}

As we know that;

 \\ \boxed{ \sf{ \blue{ x=\dfrac{-b\pm\sqrt{{b}^{2}-4ac}}{2a}}}}\\ \\

Substituting the values of a, b and c :-

 \\  \sf{ \bold{x} =  \frac{ - ( -  {a} ^{2}  - 1) \pm  \sqrt{( -  {a}^{2} - 1)  {}^{2} - 4 \times a \times a } }{2a} }

Now,

 \\   \rm{Simplifying  \:  \sqrt{( -  {a}^{2} - 1)  {}^{2} - 4 \times a \times a }:-}

 \\  \sf{ \bold{\sqrt{( -  {a}^{2} - 1)  {}^{2} - 4 \times a \times a }}}

 \\  \sf{ \implies{\sqrt{( -  {a}^{2}) {}^{2}   - 2 \times  {a}^{2}   \times  {1}^{2} - 4 {a}^{2}  }}}

 \\  \sf{ \implies{\sqrt{ {a}^{4}   - 2 {a}^{2}  + 1 }}}

 \\  \sf{ \implies{\sqrt{ ( {a}^{2} ) {}^{2}    - 2 \times  {a}^{2}  \times 1 +  {1}^{2} }}}

 \\  \sf{ \implies{\sqrt{ ( {a}^{2} - 1) {}^{2}   }}}

 \\  \sf{ \implies{ {(a)}^{2}  - (1) {}^{2} }}

 \\  \sf{ \implies{ \bold{(a + 1)(a - 1)}}}

 \\ \\    \rm{ \therefore{ \bold {\:  \sqrt{( -  {a}^{2} - 1)  {}^{2} - 4 \times a \times a  } = (a + 1)(a - 1)}}} \\  \\

Therefore,

 \\  \sf{ \bold{x} =  \frac{ - ( - a {}^{2} - 1) \pm(a + 1)(a - 1) }{2a} }

Hence,

  \\  \sf{ \bold{{x}_{1}} =  \frac{ - ( - a {}^{2}  - 1) + (a + 1)(a - 1)}{2a} }

  \\  \sf{ \bold{{x}_{1}} =  \frac{  {a}^{2}  + 1 +  {a}^{2}  - 1}{2a} }

 \\  \sf{ \bold{{x}_{1}} =  \frac{ 2 {a}^{2} }{2a} }

 \\  \sf{ \therefore{ \bold{ \red{{x}_{1} =  a}}}}

Again,

  \\  \sf{ \bold{{x}_{2}} =  \frac{ - ( - a {}^{2}  - 1)  -  (a + 1)(a - 1)}{2a} }

  \\  \sf{ \bold{{x}_{2}} =  \frac{  {a}^{2}  + 1  -   {a}^{2}   + 1}{2a} }

 \\  \sf{ \bold{{x}_{2}} =  \frac{ 2  }{2a} }

 \\  \sf{ \therefore{ \bold{ \red{{x}_{2} = \frac{1}{a}   }}}}

 \\  \\  \underline{ \boxed{ \rm{ \green{Hence,\: value \: of \: \bold{x = a \: , \:  \frac{1}{a} }}}}} \\  \\

Similar questions