Math, asked by huzefa3637, 1 month ago

Solve the following quadratic equation using completing the square. Leave your answer in surd form.

1) 15 – 6x – 2x² = 0

Answer should be:–
x=
 \frac{ - 3 +  \sqrt{39} }{2}
AND
x=
 \frac{ - 3 -  \sqrt{39} }{2}

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given quadratic equation is

\rm :\longmapsto\:15 - 6x -  {2x}^{2} = 0

can be rewritten as

\rm :\longmapsto\: {2x}^{2} + 6x - 15 = 0

\rm :\longmapsto\: {2x}^{2} + 6x = 15

Step :- 1 Make the coefficient of x² unity, divide the whole equation by 2

\rm :\longmapsto\: {x}^{2} + 3x = \dfrac{15}{2}

Step :- 2 Add the square of half the coefficient of x on both sides, we get

\rm :\longmapsto\: {x}^{2} + 3x  +  {\bigg[\dfrac{3}{2} \bigg]}^{2} = \dfrac{15}{2}  +  {\bigg[\dfrac{3}{2} \bigg]}^{2}

can be rewritten as

\rm :\longmapsto\: {x}^{2} + 2 \times \bigg[\dfrac{3}{2} \bigg] \times x  +  {\bigg[\dfrac{3}{2} \bigg]}^{2} = \dfrac{15}{2}  +  {\bigg[\dfrac{3}{2} \bigg]}^{2}

We know,

 \boxed{ \bf{ \:  {(x + y)}^{2} =  {x}^{2} + 2xy +  {y}^{2}}}

So, using this

\rm :\longmapsto\: {\bigg[x + \dfrac{3}{2} \bigg]}^{2} =  \dfrac{15}{2}  + \dfrac{9}{4}

\rm :\longmapsto\: {\bigg[x + \dfrac{3}{2} \bigg]}^{2} =  \dfrac{30 + 9}{4}

\rm :\longmapsto\: {\bigg[x + \dfrac{3}{2} \bigg]}^{2} =  \dfrac{39}{4}

\rm :\longmapsto\:x + \dfrac{3}{2} =  \:  \pm \: \dfrac{ \sqrt{39} }{2}

\rm :\longmapsto\:x  =  -  \dfrac{3}{2}    \pm \: \dfrac{ \sqrt{39} }{2}

\bf \implies\:x = \dfrac{ - 3 +  \sqrt{39} }{2} \:  \:  \: or \:  \:  \: x = \dfrac{ - 3 -  \sqrt{39} }{2}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions