Math, asked by BrainlyProgrammer, 3 months ago

Solve the following Quadratic Equation [Using Factorisation method]
   \orange{\bold{\large\tt\dfrac{a}{ \: ax - 1 \: }  +  \dfrac{b}{ \: bx - 1 \: } = a + b}} \\  \green{ \bold{ \tt a + b \neq0 } }\\ \green{  \bold{\tt \: ab \neq0}}

Answers

Answered by TheMoonlìghtPhoenix
93

Answer:

Step-by-step explanation:

\sf{\dfrac{a}{ax-1} + \dfrac{b}{bx-1} = a + b}

Now, bringing the terms which are going to make a difference are :- a and b.

Let's see the magic brought out by them:-

\sf{\dfrac{a}{ax-1} - b= a - \dfrac{b}{bx-1}}

Why I did this, to cancel out the terms that will be formed in future.

\sf{\dfrac{a - bax + b}{ax-1}=  \dfrac{abx - a - b}{bx-1}}

\sf{(a - abx + b)(bx-1) = (ax-1)(abx - a - b)}

Method 1 :- Cancelling the terms.

We will taken (-) common in 2nd phase :-

\sf{(a - abx + b)(bx-1) = -  (ax-1)(abx - a - b)}

\sf{(a - abx + b)(bx-1) =   (ax-1)(- abx + a + b)}

\sf{(bx-1) =   (ax-1)}

\sf{bx + ax -2 = 0}

\sf{x(a+b)= 2}

\sf{x= \dfrac{2}{a+b}} Answer (1)

Wait, the answer is still not complete yet!

Method 2:- Bringing common the 2 terms :-

\sf{(a - abx + b)(bx-1) = -  (ax-1)(abx - a - b)}

\sf{(a - abx + b)(bx-1) +(ax-1)(abx - a - b)  =  0}

[Minus turns plus on either side]

Taking a-abx+b common,

\sf{(a - abx + b)(bx-1 + ax -1)  = 0  }

\sf{(a - abx + b)(bx- 2 + ax )  = 0  }

Look carefully! The second equation is similar to answer 1, so we have already found it.

We need to simplify 1st one.

1st one = 0 , 2nd one = 0

\sf{a - abx + b = 0  }

\sf{a  + b = abx } [Minus turns plus]

\sf{\dfrac{a  + b }{ab}= x } Answer (2)

\sf{x= \dfrac{2}{a+b}} , \sf{\dfrac{a  + b }{ab}= x } are the answers by factorisation.


TheMoonlìghtPhoenix: Unlike factorization, this can be determined by Sridharacharya's method also. [Discriminant method]
Answered by assingh
134

Topic :-

Quadratic Equation

Given :-

\mathtt{\dfrac{a}{ax-1}+\dfrac{b}{bx-1}=a+b}

To Find :-

Value of x.

Solution :-

\mathtt{\dfrac{a}{ax-1}+\dfrac{b}{bx-1}=a+b}

Transpose (a + b) in LHS,

\mathtt{\dfrac{a}{ax-1}+\dfrac{b}{bx-1}-a-b=0}

Rearrange it,

\mathtt{\left( \dfrac{a}{ax-1}-b \right )+\left ( \dfrac{b}{bx-1}-a \right )=0}

Take LCM,

\mathtt{\left( \dfrac{a-b(ax-1)}{ax-1} \right )+\left ( \dfrac{b-a(bx-1)}{bx-1}\right )=0}

Solve brackets,

\mathtt{\left( \dfrac{a-abx+b}{ax-1} \right )+\left ( \dfrac{b-abx+a}{bx-1}\right )=0}

Take (a + b -abx ) common,

\mathtt{(a+b-abx)\left( \dfrac{1}{ax-1}+ \dfrac{1}{bx-1}\right )=0}

Take LCM again,

\mathtt{(a+b-abx)\left( \dfrac{bx-1+ax-1}{(ax-1)(bx-1)}\right )=0}

\mathtt{(a+b-abx)\left( \dfrac{bx+ax-2}{(ax-1)(bx-1)}\right )=0}

\mathtt{ \dfrac{(a+b-abx)(ax+bx-2)}{(ax-1)(bx-1)}=0}

Cross Multiply,

\mathtt{(a+b-abx)(ax+bx-2)=0(ax-1)(bx-1)}

\mathtt{(a+b-abx)(ax+bx-2)=0}

So,

\mathtt{Either\:(a+b-abx) = 0\:or\:(ax+bx-2) = 0.}

Case 1,

\mathtt{a+b-abx=0}

\mathtt{abx=a+b}

\mathtt{x=\dfrac{a+b}{ab}}

Case 2,

\mathtt{ax+bx-2=0}

\mathtt{(a+b)x-2=0}

\mathtt{(a+b)x=2}

\mathtt{x=\dfrac{2}{a+b}}

Answer :-

So,

\mathtt{x=\dfrac{a+b}{ab}\;or}

\mathtt{x=\dfrac{2}{a+b}}

Similar questions