Math, asked by BrainlyProgrammer, 3 months ago

Solve the following Quadratic Equation [Using Factorisation method]
  \\  \\  \:  \:  \:  \:  \:  \:  \boxed{\orange{ \bold {\tt \dfrac{1}{2a + b + 2x} =  \dfrac{1}{2a} +  \dfrac{1}{b} +  \dfrac{1}{2x} }}} \\  \\

Answers

Answered by anindyaadhikari13
25

Required Answer:-

Given Equation:

 \dag\:\:\boxed{\tt  \dfrac{1}{2a + b + 2x}  =  \dfrac{1}{2a} +  \dfrac{1}{b}  +  \dfrac{1}{2x} }

To Find:

  • The values of x.

Solution:

Given,

 \tt \implies\dfrac{1}{2a + b + 2x}  =  \dfrac{1}{2a} +  \dfrac{1}{b}  +  \dfrac{1}{2x}

Moving 1/2x to left side, we get,

 \tt \implies\dfrac{1}{2a + b + 2x} -  \dfrac{1}{2x}  =  \dfrac{1}{2a} +  \dfrac{1}{b}

 \tt \implies\dfrac{2x - (2a + b + 2x)}{2x(2a + b + 2x)}  =  \dfrac{1}{2a} +  \dfrac{1}{b}

 \tt \implies\dfrac{2x - 2a - b - 2x}{2x(2a + b + 2x)}  =  \dfrac{1}{2a} +  \dfrac{1}{b}

 \tt \implies\dfrac{2x - 2a - b - 2x}{2x(2a + b + 2x)}  =  \dfrac{1}{2a} +  \dfrac{1}{b}

 \tt \implies\dfrac{ - 2a - b }{2x(2a + b + 2x)}  =  \dfrac{2a + b}{2ab}

 \tt \implies\dfrac{ -1(2a + b) }{2x(2a + b + 2x)}  =  \dfrac{2a + b}{2ab}

 \tt \implies\dfrac{ -1}{2x(2a + b + 2x)}  =  \dfrac{1}{2ab}

On transposing, we get,

 \tt \implies 2x(2a + b + 2x) =  - 2ab

 \tt \implies x(2a + b + 2x) =  - ab

 \tt \implies 2 {x}^{2} + (2a + b) x +  ab = 0

 \tt \implies 2 {x}^{2} + 2ax + bx +  ab = 0

 \tt \implies 2x(x +a)+ b(x +  a) = 0

 \tt \implies (2x + b)(x +  a) = 0

 \tt \implies Either  \: (2x + b) = 0 \: or \: (x +  a) = 0

So,

 \tt \implies x =  \dfrac{ - b}{2} , - a

Hence, the values of x are - (-b/2) and (-a).

Answer:

  • x = -b/2, -a.

•••♪

Answered by OtakuSama
31

Question:-

Solve the following Quadratic Equation [Using Factorisation method]

 \: \\ \\{ \bold {\sf \dfrac{1}{2a + b + 2x} = \dfrac{1}{2a} + \dfrac{1}{b} + \dfrac{1}{2x} }}  \\  \\

Required Answer:-

Given Equation:-

 \: \\ \\ {\sf \dfrac{1}{2a + b + 2x} = \dfrac{1}{2a} + \dfrac{1}{b} + \dfrac{1}{2x} }\\  \\

To Find:-

 \\  \sf{ \rightarrow{values \: of \: \bold{x}}} \\  \\

Solution:-

 \: \\ \\{\sf{ \bold{ \dfrac{1}{2a + b + 2x} = \dfrac{1}{2a} + \dfrac{1}{b} + \dfrac{1}{2x} }}}

 \\  \sf{ \implies{ \frac{1}{2a + b + 2x}  -  \frac{1}{2x}  =  \frac{1}{2a}  +  \frac{1}{b} }}

 \\  \sf{ \implies{ \frac{2x - (2a + b + 2x)}{2x(2a + b + 2x)} =  \frac{1}{2a} }} +  \frac{1}{b}

 \\  \sf{ \implies{ \frac{2x - 2a  -  b  -  2x}{2x(2a + 2b + 2x)}  =  \frac{b + 2a}{2ab} }}

 \\  \sf{ \implies{ \frac{ - 2a - b}{2x(2a + b + 2x)}  =  \frac{2a + b}{2ab} }}

 \\  \sf{ \implies{ \frac{ -( 2a  +  b)}{2x(2a + b + 2x)}  =  \frac{2a + b}{2ab} }}

  \\  \sf{ \implies{ \frac{ - 1}{2x(2a + b + 2x)}  =  \frac{1}{2ab} }} \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \rm{dividing \:  by \: (2a + b)}}

 \\  \sf{ \implies{2x(2a + b + 2x) =  - 2ab}}

 \\\sf{ \implies{x(2a + b + 2x) =  - ab}}

 \\    \sf{ \implies{ 2ax + bx + 2 {x}^{2} =  - ab}}

 \\  \sf{ \implies{2 {x}^{2}  + 2ax + bx + ab = 0}}

 \\  \sf{ \implies{2x(x + a) + b(x + a) = 0}}

 \\  \sf{ \implies{ \bold{(x + a)(2x + b) = 0}}}\\

Now, Either,

\\ \bold{x + a = 0} \\

 \\ \sf{ \rightarrow{ \red{x =  - a}}}\\

Or,

\\ \bold{2x + b = 0}

 \\  \sf{ \rightarrow{2x =  - b}}

 \\  \sf{ \rightarrow{ \red{x =  \frac{ - b}{x} }}}\\

 \\  \\  \underline{ \boxed{ \rm{ \green{Hence, \: x =  \bold{ - a, \: \frac{ - b}{2} }}}}} \\

Similar questions