Math, asked by shikhauppal2021, 9 days ago

Solve the following quadratic equation using factorisation

 {4x}^{2}  - 4ax +  {a}^{2}  -  {b}^{2}  = 0

Answers

Answered by mathdude500
65

\large\underline{\sf{Solution-}}

Given expression is

\rm \:  {4x}^{2} - 4ax +  {a}^{2} -  {b}^{2}  = 0 \\

can be rewritten as

\rm \:  {(2x)}^{2} - 2 \times 2a \times x +  {a}^{2} -  {b}^{2}  = 0 \\

can be regrouped as

\rm \:  ({(2x)}^{2} - 2 \times 2a \times x +  {a}^{2}) -  {b}^{2}  = 0 \\

We know,

\boxed{\sf{  \:\rm \:  {x}^{2} - 2xy +  {y}^{2}  =  {(x - y)}^{2}  \:  \: }} \\

So, using this identity, we get

\rm \:  {(2x - a)}^{2} -  {b}^{2} = 0 \\

We know,

\boxed{\sf{  \:\rm \:  {x}^{2} -  {y}^{2}  = (x + y)(x - y) \:  \: }} \\

So, using this identity, we get

\rm \: (2x - a - b)(2x - a + b) = 0 \\

\rm \: 2x - a - b = 0 \:  \: or \:  \: 2x - a + b = 0 \\

\rm \: 2x = a + b \:  \: or \:  \: 2x = a - b \\

\rm\implies \:x = \dfrac{a + b}{2}  \:  \: or \:  \: x = \dfrac{a - b}{2}  \\

\rule{190pt}{2pt}

Alternative Method :-

\rm \:  {4x}^{2} - 4ax +  {a}^{2} -  {b}^{2}  = 0 \\

can be rewritten as

\rm \:  {4x}^{2} - 2(2a)x +  (a + b)(a - b)  = 0 \\

\rm \:  {4x}^{2} - 2(a + a)x +  (a + b)(a - b)  = 0 \\

\rm \:  {4x}^{2} - 2(a + a + b - b)x +  (a + b)(a - b)  = 0 \\

\rm \:  {4x}^{2} - 2(a + b + a - b)x +  (a + b)(a - b)  = 0 \\

\rm \:  {4x}^{2} - 2(a + b)x -  2(a - b)x +  (a + b)(a - b)  = 0 \\

\rm \: 2x(2x - a - b) - (a - b)(2x - a - b) = 0 \\

\rm \: (2x - a - b)(2x - a + b) = 0 \\

\rm \: 2x - a - b = 0 \:  \: or \:  \: 2x - a + b = 0 \\

\rm \: 2x = a + b \:  \: or \:  \: 2x = a - b \\

\rm\implies \:x = \dfrac{a + b}{2}  \:  \: or \:  \: x = \dfrac{a - b}{2}  \\

\rule{190pt}{2pt}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Answered by xxblackqueenxx37
54

 \: \: \: \: \: \: \: \huge\color {pink}\boxed{\colorbox{black} {❥Answer}}

The given quadratic equation is

4x² - 4ax + (a²-b²) = 0

4x² - 4ax + (a + b)(a - b) = 0

4x² +[- 2a-2a +2b-2b] x+(a - b) (a + b)=0

4x²+(2b-2a)x - (2a+2b)x +(a - b)(a + b)= 0

4x²+2(b - a)x - 2(a + b )x+ (a - b)(a + b)= 0

2x [2x - (a - b)]- (a + b) [2x - (a - b)] = 0

[2x - (a - b)] [2x - (a + b)] = 0

2x - (a - b) = 0, 2x - ( a + b ) = 0

 \sf \: ⇒x =  \frac{a + b}{2} , \frac{a - b}{2}  \\

Similar questions