Math, asked by Maniaclad12, 1 month ago

solve the following quadratic equation x^-7x+3=0 give your answer correct to two decimal places
NOTE:-Do not spam
I will mark the first answer as brainlyest

Answers

Answered by Anonymous
38

 \huge \rm {Answer:-}

 \bf \red {Given\: Quadratic\: equation:-}

 \dashrightarrow \tt {x^{2}-7x+3=0}

★The above given equation is in the form of  \tt {ax^{2}+bx+c=0}

 \bf \blue {We\: Know:-}

\large \dashrightarrow \tt {x=\frac{-b±\sqrt{b^{2}-4ac}}{2a}}

 \bf \pink {Where,}

a=1

b= -7

c= 3

★supplanting the values we get,

\large \dashrightarrow \tt {x=\frac{-(-7)±\sqrt{(7)^{2}-4\times1\times3}}{2\times1}}

\large \dashrightarrow \tt {x=\frac{7±\sqrt{49-12}}{2}}

\large \dashrightarrow \tt {x=\frac{7±\sqrt{37}}{2}}

★Considering positive value,

\large \dashrightarrow \tt {x=\frac{7+\sqrt{37}}{2}}

\large \dashrightarrow \tt {x=\frac{7+6.08}{2}}

\small \tt {[∵\sqrt{37}=6.08]}

\large \dashrightarrow \tt {x=\frac{13.08}{2}}

\large \implies \tt \green{\fbox{x=6.54}}

★ Considering negative value,

\large \dashrightarrow \tt {x=\frac{7-\sqrt{37}}{2}}

\large \dashrightarrow \tt {x=\frac{7-6.08}{2}}

\large \dashrightarrow \tt {x=\frac{0.92}{2}}

 \implies \tt \green{\fbox{x=0.46}}

 \bf \purple {Thereupon,}

★The value of x can be 6.54 or 0.46 respectively.

Similar questions