Solve the following Quadratic Equation :
x² - 7x + 3 = 0
Answers
Given : x² - 7x + 3 = 0
⠀⠀ ⠀
⠀⠀ ⠀ ★ Here,
⠀⠀ ⠀⠀ ⠀⠀ ⠀⠀ ⠀ † a = 1
⠀⠀ ⠀⠀ ⠀⠀ ⠀⠀ ⠀ † b = -7
⠀⠀ ⠀⠀ ⠀⠀ ⠀⠀ ⠀ † c = 3
⠀⠀ ⠀
Now, We Know The Formula :
⠀⠀
⠀⠀
⠀⠀
⠀⠀
⠀⠀
⠀⠀
⠀⠀
☯ Taking positive sign,
⠀⠀
⠀⠀
☯ Taking negative sign,
⠀⠀
⠀
Hence,
⠀
⠀ ⠀ ⠀ ⠀ ⠀ ⠀ ⠀ ⠀ ⠀ ⠀⠀ ⠀
Given : x² - 7x + 3 = 0
⠀⠀ ⠀
⠀⠀ ⠀ ★ Here,
⠀⠀ ⠀⠀ ⠀⠀ ⠀⠀ ⠀ † a = 1
⠀⠀ ⠀⠀ ⠀⠀ ⠀⠀ ⠀ † b = -7
⠀⠀ ⠀⠀ ⠀⠀ ⠀⠀ ⠀ † c = 3
⠀⠀ ⠀
Now, We Know The Formula :
⠀⠀
⠀⠀\:\:\:\:\:\:\:{\blue{\bold{❍}}}\:{\underbrace{\red{\sf{x\:=\:{\dfrac{-b\:\pm\:\sqrt{b²\:-\:4ac}}{2a}}}}}}❍
x=
2a
−b±
b²−4ac
⠀⠀
\:\dashrightarrow\:\small\sf{x\:=\:{\dfrac{-\:(-7)\:\pm\:\sqrt{(-7)²\:-\:4\:\times\:1\:\times\:3}}{2\:\times\:1}}}⇢x=
2×1
−(−7)±
(−7)²−4×1×3
⠀⠀
\:\:\:\:\:\:\:\:\:\:\dashrightarrow\:\sf{x\:=\:{\dfrac{7\:\pm\:\sqrt{49\:-\:12}}{2}}}⇢x=
2
7±
49−12
⠀⠀
\:\:\:\:\:\:\:\:\:\:\dashrightarrow\:\sf{x\:=\:{\dfrac{7\:\pm\:\sqrt{37}}{2}}}⇢x=
2
7±
37
⠀⠀
\:\:\:\:\:\:\:\:\:\:\dashrightarrow\:\sf{x\:=\:{\dfrac{7\:\pm\:6.08}{2}}}⇢x=
2
7±6.08
⠀⠀
☯ Taking positive sign,
⠀⠀
\:\:\:\:\:\:\:\:\:\:\dashrightarrow\:\sf{x\:=\:{\dfrac{7\:+\:6.08}{2}}\:=\:{\pink{6.54}}}⇢x=
2
7+6.08
=6.54
⠀⠀
☯ Taking negative sign,
⠀⠀
\:\:\:\:\:\:\:\:\:\:\dashrightarrow\:\sf{x\:=\:{\dfrac{7\:-\:6.08}{2}}\:=\:{\pink{0.46}}}⇢x=
2
7−6.08
=0.46
⠀
Hence,
\:\:\:\:\:\:\:\therefore\:{\underline{\sf{The\:Quadratic \:Equation\:is\:{\textsf{\textbf{6.54}}}\:and\:{\textsf{\textbf{0.46}}}}}}.∴
TheQuadraticEquationis6.54and0.46
.
⠀
⠀ ⠀ ⠀ ⠀ ⠀ ⠀ ⠀ ⠀ ⠀ ⠀⠀ ⠀