Math, asked by practice78, 1 year ago

Solve the following quadratic equations by completing square method :

1. x^2+x-20=0

2. x^2+2x-5=0

Want a well explained answer! ​


gautamkumar896: kkkkkk
sonukr76: hi

Answers

Answered by Anonymous
53

Answer :-

→ 1. 4 or -5 .

→ 2. √6 - 1 or -√6 - 1 .

Step-by-step explanation :-

1 . x² + x - 20 = 0 .

 \sf \implies {x}^{2} + x = 20 .\\  \\ \sf \implies {x}^{2} + 2 \times x \times \frac{1}{2} = 20 . \\  \\  \sf \implies {x}^{2} + 2 \times x \times \frac{1}{2} +  {( \frac{1}{2} )}^{2}  = 20 +  {( \frac{1}{2}) }^{2} . \:  \:  \:  \:  \{ \tt adding  \:  {( \frac{1}{2} )}^{2}  \: on \: both \: side \} \\  \\  \sf \implies {(x +  \frac{1}{2}) }^{2} = 20 +  \frac{1}{4} . \\  \\  \sf \implies {(x +  \frac{1}{2}) }^{2}  =  \frac{(80 + 1)}{4} . \\  \\  \sf \implies {(x +  \frac{1}{2}) }^{2} =  \frac{81}{4} . \\  \\  \sf \implies x +  \frac{1}{2}  = \pm \sqrt{ \frac{81}{4} } . \\  \\  \sf \implies x +  \frac{1}{2}  = \pm \frac{9}{2}. \\  \\  \sf \implies x =  \frac{ - 1}{2} \pm \frac{9}{2} . \\  \\ \sf \implies x = (  \frac{ - 1}{2}  +  \frac{9}{2}  )  \:  \: or \:  \:  x = (  \frac{ - 1}{2}  -   \frac{9}{2} ) . \\  \\  \sf \implies x =  \frac{8}{2}   \:  \: or  \:  \: x =  \frac{ - 10}{2} . \\  \\  \huge \pink{ \boxed{ \therefore \it x = 4 \:  \:  or \:  \:  x = -5 .}}

2 . x² + 2x - 5 = 0 .

 \sf \implies {x}^{2}  + 2x = 5. \\  \\ \sf \implies {x}^{2}  + 2 \times x \times 1 +  {1}^{2}  = 5 +  {1}^{2} . \:  \:  \:  \{ \tt adding \:  {1}^{2}  \: on \: both \: side \} \\  \\  \sf \implies {(x + 1)}^{2}  =6 . \\  \\  \sf \implies x + 1 = \pm \sqrt{6} . \\  \\  \sf \implies x = \pm \sqrt{6}  - 1. \\  \\  \huge \orange{ \boxed{ \it \therefore x =  \sqrt{6}  - 1 \:  \: or \:  \:  -  \sqrt{6}  - 1.}}

Hence, it is solved .


Anonymous: thanks for answering :)
gautamkumar896: nice
sonukr76: kahaa se copy kiya
sonukr76: solve this with factorisation
gautamkumar896: iii
gautamkumar896: nahi
gautamkumar896: hai
practice78: thanks :g
Answered by Anonymous
26

Solution :

1.

Solution :

x^2 + x - 20 = 0

=> x^2 + x - 20 = 0

=> x^2 + x = 20

=> x^2 + 2 × x × 1/2 + (1/2)^2 = 20 + (1/2)^2

Now, by adding (1/2)^2 on both the sides.

=> (x + 1/2)^2 = 20 + (1/4)

=> (x + 1/2)^2 = (80 + 1/4)

=> (x + 1/2)^2 = (81/4)

=> √(x + 1/2)^2 = √(81/4)

=> (x + 1/2) = 9/2

=> x + 1/2 = 9/2

=> x = (-1/2 + 9/2) or x = (-1/2 - 9/2)

=> x = 8/2 or x = -10/2

=> x = 4 or x = -5

.°. x = 4, or x = -5.

Answer : x = 4, or x = -5.

2.

Solution :

x^2 + 2x - 5 = 0

=> x^2 + 2x - 5 = 0

=> x^2 + 2x = 5

=> x^2 + 2 × x × 1 + 1^2 = 5 + 1^2

Now, adding 1^2 on both sides.

(x + 1)^2 = 6

=> √(x + 1)^2 = √6

=> x + 1 = √6

=> x = (√6 - 1), or (-√6 - 1)

.°. x = (√6 - 1), or (-√6 - 1)

Answer : x = (√6 - 1), or (-√6 - 1).

Similar questions