Math, asked by nainasahu34736, 4 months ago


Solve the following quadratic equations by completing the squares method.
2x² + x -4 = 0​

Answers

Answered by rubyashok1978
0

01

Step-by-step explanation:

2x2 +4(-7) =π9

/7:86

038) 9396+-_&#/₹+@

Answered by Yugant1913
7

Step-by-step explanation:

2 {x}^{2}  + x - 4 = 0

⇒2 {x}^{2}  + x = 4

⇒ {x}^{2}  +  \frac{1}{2} x =  \frac{4}{2}  = 2

⇒ {x}^{2}  + 2. \frac{1}{2} . \frac{1}{2} x +  {( \frac{1}{4} )}^{2}  -  {( \frac{1}{4} )}^{2}  = 2

⇒(x +  { \frac{1}{4}) }^{2}  = 2 +  \frac{1}{16}  \:  \\  =  \frac{33}{16}  =  {(  \frac{  \sqrt{33}  }{4}  )}^{2}

on \: taking \: square \: root

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x +  \frac{1}{4}  = ±( \frac{ \sqrt{33} }{4} )

on \: taking \: ( + ) \: sign

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x +  \frac{1}{4}  =  \frac{ \sqrt{33} }{4}

⇒ \:  \:  \:  \:  \:  \:  \:  \: x =  \frac{ \sqrt{33} }{4}  -  \frac{1}{4}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{ \sqrt{33 }  - 1}{4}

on \: taking \: ( - ) \: sign \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x +  \frac{1}{4}  =  -  \frac{ \sqrt{33} }{4}

⇒x =  \frac{ -  \sqrt{33} }{4}  -  \frac{1}{4}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{ - (  \sqrt{33} + 1)  }{4}

∴ \:  \:  \:  \:  \:  \: Roots \:  of \:  equation  \: are

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x =  \frac{ \sqrt{33} - 1 }{4},  \frac{ - 1 \sqrt{33} - 1 }{4} .

Similar questions