Solve the following quadratic equations by factorisation method:
1/a+b+x=1/a+1/b+1/x a+b is not equal to 0
Answers
Answered by
17
Answer:
Step-by-step explanation:
1/(a+b+x)=1/a + 1/b + 1/x
1/(a+b+x)=(bx+ax+ab)/abx
abx=abx+a2x+a2b+b2x+abx+ab2+bx2+ax2+abx
ax2+bx2+a2x+abx+abx+b2x+a2b+ab2=0
x2(a+b)+ax(a+b)+bx(a+b)+ab(a+b)=0
(a+b)(x2+ax+bx+ab)=0
since, a+b!=0
so, x2+ax+bx+ab=0
x(x+a)+b(x+a)=0
(x+a)(x+b)=0
x=-a,-b
Similar questions