Math, asked by ravinabhoyar, 2 months ago

solve the following quadratic equations by factorization method

1 \div x + 2 = 1 \div x { }^{2}

Attachments:

Answers

Answered by MysticSohamS
1

Step-by-step explanation:

hey here is your answer

pls mark it as brainliest

so here w go

so 1/x+2=1/x square

ie x square=x+2

ie x square-x-2=0

so x square-2x+x-2=0

ie x(x-2)+1 (x-2)=0

(x-2)(x+1)=0

ie x-2=0 or x+1=0

ie x=2 or x=-1

hence 2 and -1 are required roots of above quadratic equation

Answered by NewGeneEinstein
3

Step-by-step explanation:

Question:-

Solve it

\\ \tt{:}\twoheadrightarrow \dfrac{1}{x+2}=\dfrac{1}{x^2}

SOLUTION:-

\\ \tt{:}\twoheadrightarrow  \frac{1}{x + 2}  =  \frac{1}{ {x}^{2} }  \\  \bf  \bigstar\: using \: cross \: multiplication\\ \\  \tt{:}\twoheadrightarrow  {x}^{2}  = x + 2 \\ \\ \tt{:}\twoheadrightarrow  {x}^{2}  - x - 2 = 0 \\ \\ \tt{:}\twoheadrightarrow  {x}^{2}  - 2x + x  - 2 = 0 \\ \\ \tt{:}\twoheadrightarrow x(x - 2) + 1(x - 2) = 0 \\ \\ \tt{:}\twoheadrightarrow (x - 2)(x + 1) = 0 \\ \\ \tt{:}\twoheadrightarrow (x  -  2) = 0 \:or \: (x + 1) = 0 \\ \\ \tt{:}\twoheadrightarrow x  = 2 \: or \: x =  - 1

Similar questions