Math, asked by reenakhare25, 4 days ago

solve the following quadratic equations by factorization​

Attachments:

Answers

Answered by mathdude500
8

Given Question :-

Solve the following quadratic equations by factorization method :-

\rm \: (a). \:  \: 16x - \dfrac{10}{x} = 27 \\

\rm \: (b). \:  \:  {3x}^{2} - 14x - 5 = 0  \\

\rm \: (c). \:  \:  {5x}^{2} - 3x - 2 = 0  \\

\large\underline{\sf{Solution-a}}

Given quadratic equation is

\rm \:  16x - \dfrac{10}{x} = 27 \\

\rm \:  \dfrac{ {16x}^{2} -  10}{x} = 27 \\

\rm \:  {16x}^{2} - 10 = 27x \\

\rm \:  {16x}^{2} - 10 - 27x  = 0\\

\rm \:  {16x}^{2}  - 27x - 10  = 0\\

Using splitting of middle terms, we get

\rm \:  {16x}^{2}  - 32x + 5x - 10  = 0\\

\rm \: 16x(x - 2) + 5(x - 2) = 0 \\

\rm \: (x - 2)(16x + 5) = 0 \\

\rm\implies \:x = 2 \:  \: or \:  \: x =  - \dfrac{5}{16}  \\

\large\underline{\sf{Solution-b}}

Given quadratic equation is

\rm \:  {3x}^{2} - 14x - 5 = 0 \\

\rm \:  {3x}^{2} - 15x + x - 5 = 0 \\

\rm \: 3x(x - 5) + 1(x - 5) = 0 \\

\rm \: (x - 5)(3x + 1) = 0 \\

\rm\implies \:x = 5 \:  \: or \:  \: x =  - \dfrac{1}{3}  \\

\large\underline{\sf{Solution-c}}

Given quadratic equation is

\rm \:  {5x}^{2} - 3x - 2 = 0  \\

\rm \:  {5x}^{2} - 5x + 2x - 2 = 0  \\

\rm \: 5x(x - 1) + 2(x - 1) = 0 \\

\rm \: (x - 1)(5x + 2) = 0 \\

\rm\implies \:x = 1 \:  \: or \:  \: x =  - \dfrac{2}{5}  \\

\rule{190pt}{2pt}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Answered by TheAestheticBoy
27

Question :-

  • Solve the Quadratic Equations :-

\bull \: \sf{16x - \frac{10}{x} = 27 } \\

\bull \: \sf{3 {x}^{2} - 14x - 5 = 0 }

\bull \: \sf{5 {x}^{2} - 3x - 2 = 0 }

_____________________

Answer :-

⠀⠀⠀⠀⠀⠀⠀

  • Solving First Equation :-

\dashrightarrow \:  \sf{16x -  \frac{10}{x} = 27 } \\

\dashrightarrow \:  \sf{ \frac{16 {x}^{2} - 10 }{x} = 27 } \\

\dashrightarrow \:  \sf{16x {}^{2}  - 10 = 27x} \\

\dashrightarrow \:  \sf{16 {x}^{2} - 10 - 27x = 0 } \\

\dashrightarrow \:  \sf{16 {x}^{2} - 27x - 10 = 0 } \\

\dashrightarrow \:  \sf{16 {x}^{2} - 32x + 5x - 10 = 0 } \\

\dashrightarrow \:  \sf{16x \: (x−2)+5 \: (x−2)=0}

\dashrightarrow \:  \sf{(x−2) \: (16x+5)=0} \\

\therefore \:  \sf{x = 2 \:  \: \:  or \:  \:  \:x =  \frac{5}{16}  } \\

⠀⠀⠀⠀⠀⠀⠀

  • Solving Second Equation :-

\dashrightarrow \:  \sf{3 {x}^{2} - 14x - 5 = 0 } \\

\dashrightarrow \:  \sf{3 {x}^{2} - 15x  + x - 5 = 0} \\

\dashrightarrow \:  \sf{3x \: (x - 5) + 1 \: (x - 5) = 0} \\

\dashrightarrow \:  \sf{(x−5) \: (3x+1)=0} \\

\therefore \:  \sf{x = 5 \:  \:  \: or \:  \:  \:x =   - \frac{1}{3} } \\

⠀⠀⠀⠀⠀⠀⠀

  • Solving Third Equation :-

\dashrightarrow \:  \sf{5 {x}^{2} - 3x - 2 = 0 } \\

\dashrightarrow \:  \sf{5 {x}^{2} - 5x+2x - 2=0 } \\

\dashrightarrow \:  \sf{5x \: (x - 1) + 2 \: (x - 1) = 0} \\

\dashrightarrow \:  \sf{(x - 1) \: (5x + 2) = 0} \\

\therefore \:  \sf{x  = 1 \:  \:  \: or \:  \:  \: x =  -  \frac{2}{5}  } \\

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions