Solve the following quadratic equations by factorization: , x≠1, -1
Answers
SOLUTION :
Given : (x + 1)/(x −1) - (x −1)/(x + 1) = 5/6
[ (x + 1) (x + 1) - x - 1) (x - 1)] / [(x + 1) (x - 1)] = ⅚
[ By taking LCM]
[(x + 1)² −(x −1)²] /[x² −1] = ⅚
[(x² + 1² + 2x ) - (x² + 1² - 2x )] / [x² −1] = ⅚
[(a + b)² = a² + b² + 2ab & (a - b)² = a² + b² - 2ab]
[x² + 1² + 2x - x² - 1² + 2x )] / [x² −1] = ⅚
4x / [x² −1] = ⅚
6(4x) = 5(x² -1)
24x = 5x² - 5
5x² - 24x -5 = 0
5x² - 25x + x- 5 = 0
5x(x - 5) + 1(x - 5) =0
(5x +1)(x - 5) = 0
x - 5 = 0 or 5x + 1 = 0
x = 5 or 5x = -1
x = 5 or x = - 1/5
Hence, the roots of the quadratic equation (x + 1)/(x −1) - (x −1)/(x + 1) = 5/6 are 5 & - ⅕ .
★★ METHOD TO FIND SOLUTION OF a quadratic equation by FACTORIZATION METHOD :
We first write the given quadratic polynomial as product of two linear factors by splitting the middle term and then equate each factor to zero to get desired roots of given quadratic equation.
HOPE THIS ANSWER WILL HELP YOU….
LCM of ( x - 1 ) & ( x + 1 ) =
Cross Multiplication
6 ( 4x ) = 5 ( x² - 1 )
24x = 5x² - 5
5x² - 24x - 5 = 0
By Middle Term Factorisation
5x² - 25x + x - 5 = 0
Taking common
5x ( x - 5 ) + 1 ( x - 5 ) = 0
( 5x + 1 ) ( x - 5 ) = 0
Using Zero Product Rule
5x + 1 = 0 and x - 5 = 0
x = -1 / 5 and x = 5