Solve the following quadratic equations by factorization: ; ,
Answers
Answered by
2
SOLUTION :
Given : 3(3x - 1/ 2x + 3) - 2(2x + 3 /3x - 1) = 5
3[(3x - 1)² - 2(2x + 3)²] / (3x - 1)(2x + 3) = 5
[ By taking LCM]
[3((3x)² + 1² - 2×3x×1 ) - 2((2x)² + 3² + 2× 2x ×3] / (6x² - 2x + 9x - 3) = 5
[3(9x² + 1 - 6x ) - 2 (4x² + 9 + 12x )] / (6x² + 7x - 3) = 5
[27x² + 3 - 18x - 8x² - 18 - 24x] / (6x² + 7x - 3) = 5
(19x² - 42x - 15) / (6x² + 7x - 3) = 5
(19x² - 42x - 15) = 5(6x² + 7x - 3)
(19x² - 42x - 15) = (30x² + 35x - 15)
30x² - 19x² + 35x + 42x - 15 + 15 = 0
11x² + 77x = 0
11x(x + 7) = 0
11x = 0 or x + 7 = 0
x = 0/11 or x = - 7
x = 0 or x = - 7
Hence, the roots of the quadratic equation 3(3x - 1/ 2x + 3) - 2(2x + 3 /3x - 1)= 5 are 0 & - 7 .
HOPE THIS ANSWER WILL HELP YOU….
Answered by
1
Solution :
Given ; ,
Let ( 3x-1 )/( 2x + 3 ) = a ----( 1 )
Now ,
3a - 2/a = 5
=> ( 3a² - 2 )/a = 5
=> 3a² - 2 = 5a
=> 3a² - 5a - 2 = 0
Splitting the middle term , we get
=> 3a² - 6a + 1a - 2 = 0
=> 3a( a - 2 ) + 1( a - 2 ) = 0
=> ( a - 2 )( 3a + 1 ) = 0
Now ,
a - 2 = 0 or 3a + 1 = 0
=> a = 2 or 3a = -1
i ) Take a = 2
From ( 1 ) ,
( 3x - 1 )/( 2x + 3 ) = 2
=> 3x - 1 = 2( 2x + 3 )
=> 3x - 1 = 4x + 6
=> -1 - 6 = 4x - 3x
=> -7 = x
=> x = -7
ii ) Take 3a = -1
=> 3( 3x - 1 )/( 2x + 3 ) = -1
=> 9x - 3 = -1( 2x + 3 )
=> 9x - 3 = -2x - 3
=> 9x + 2x = -3 + 3
=> 11x = 0
=> x = 0
Therefore ,
x = -7 or x = 0
••••
Given ; ,
Let ( 3x-1 )/( 2x + 3 ) = a ----( 1 )
Now ,
3a - 2/a = 5
=> ( 3a² - 2 )/a = 5
=> 3a² - 2 = 5a
=> 3a² - 5a - 2 = 0
Splitting the middle term , we get
=> 3a² - 6a + 1a - 2 = 0
=> 3a( a - 2 ) + 1( a - 2 ) = 0
=> ( a - 2 )( 3a + 1 ) = 0
Now ,
a - 2 = 0 or 3a + 1 = 0
=> a = 2 or 3a = -1
i ) Take a = 2
From ( 1 ) ,
( 3x - 1 )/( 2x + 3 ) = 2
=> 3x - 1 = 2( 2x + 3 )
=> 3x - 1 = 4x + 6
=> -1 - 6 = 4x - 3x
=> -7 = x
=> x = -7
ii ) Take 3a = -1
=> 3( 3x - 1 )/( 2x + 3 ) = -1
=> 9x - 3 = -1( 2x + 3 )
=> 9x - 3 = -2x - 3
=> 9x + 2x = -3 + 3
=> 11x = 0
=> x = 0
Therefore ,
x = -7 or x = 0
••••
Similar questions