Solve the following quadratic equations by factorization:
(x+1/x-1)-(x-1/x+1)=5/6,x≠1,-1
Answers
Answered by
1
x=5 or x= -1/5
Solution:
(x+1)/(x-1)-(x-1)/(x+1)=5/6
=>[(x+1)²-(x-1)²]/(x+1)(x-1)=5/6
=>[(x+1+x-1)(x+1-(x-1))]/x²-1=5/6
=>[(2x)(2)]/x²-1=5/6
=>4x/x²-1=5/6
=>6×(4x)=5(x²-1)
=>24x =5x²-5
=>5x²-24x-5= 0
=>5x²-25x+x-5=0
=>5x(x-5)+1(x-5)=0
=>(x-5)(5x+1)=0
=> x-5=0 , 5x+1=0
=> x=5 , x=-1/5
Answered by
3
x = 5 or,
Step-by-step explanation:
The given quadratic equation:
To find, the value of x = ?
∴
Let = a
The given quadratic equation becomes:
⇒
By crossmultiplication,
⇒ 6( - 1) = 5a
⇒ 6 - 5a - 6 = 0
⇒ 6 - 9a + 4a - 6 = 0
⇒ 3a(2a - 3) + 2(2a - 3) = 0
⇒ (2a - 3) (3a + 2) = 0
⇒ a = or,
∴ =
⇒ 2x + 2 = 3x - 3
⇒ x = 5
Also, =
⇒ 3x + 3 = - 2x + 2
⇒ 3x + 2x = 2 - 3
⇒ 5x = - 1
⇒ x =
∴ x = 5 or,
Similar questions
Art,
5 months ago
Biology,
5 months ago
CBSE BOARD XII,
5 months ago
Math,
11 months ago
English,
1 year ago