Math, asked by mkumar101086, 11 months ago

Solve the following quadratic equations
(i) 12x ^2+ 17x + 6 = 0​

Answers

Answered by gopal5021soni
1

Answer:

Step by step solution :

Step  1  :

Equation at the end of step  1  :

((22•3x2) - 17x) - 6 = 0

Step  2  :

Trying to factor by splitting the middle term

 2.1     Factoring  12x2-17x-6 

The first term is,  12x2  its coefficient is  12 .

The middle term is,  -17x  its coefficient is  -17 .

The last term, "the constant", is  -6 

Step-1 : Multiply the coefficient of the first term by the constant   12 • -6 = -72 

Step-2 : Find two factors of  -72  whose sum equals the coefficient of the middle term, which is   -17 .

     

-72

   +   

1

   =   

-71

     

-36

   +   

2

   =   

-34

     

-24

   +   

3

   =   

-21

     

-18

   +   

4

   =   

-14

     

-12

   +   

6

   =   

-6

     

-9

   +   

8

   =   

-1

     

-8

   +   

9

   =   

1

     

-6

   +   

12

   =   

6

     

-4

   +   

18

   =   

14

     

-3

   +   

24

   =   

21

     

-2

   +   

36

   =   

34

     

-1

   +   

72

   =   

71

Observation : No two such factors can be found !! 

Conclusion : Trinomial can not be factored

Equation at the end of step  2  :

12x2 - 17x - 6 = 0

Step  3  :

Parabola, Finding the Vertex :

 3.1      Find the Vertex of   y = 12x2-17x-6

Parabolas have a highest or a lowest point called the Vertex .   Our parabola opens up and accordingly has a lowest point (AKA absolute minimum) .   We know this even before plotting  "y"  because the coefficient of the first term, 12 , is positive (greater than zero). 

 Each parabola has a vertical line of symmetry that passes through its vertex. Because of this symmetry, the line of symmetry would, for example, pass through the midpoint of the two  x -intercepts (roots or solutions) of the parabola. That is, if the parabola has indeed two real solutions. 

 Parabolas can model many real life situations, such as the height above ground, of an object thrown upward, after some period of time. The vertex of the parabola can provide us with information, such as the maximum height that object, thrown upwards, can reach. For this reason we want to be able to find the coordinates of the vertex. 

 For any parabola,Ax2+Bx+C,the  x -coordinate of the vertex is given by  -B/(2A) . In our case the  x coordinate is   0.7083  

 Plugging into the parabola formula   0.7083  for  x we can calculate the  y -coordinate : 

  y = 12.0 * 0.71 * 0.71 - 17.0 * 0.71 - 6.0 

or   y = -12.021

Parabola, Graphing Vertex and X-Intercepts :

Root plot for :  y = 12x2-17x-6

Axis of Symmetry (dashed)  {x}={ 0.71} 

Vertex at  {x,y} = { 0.71,-12.02}  

 x -Intercepts (Roots) :

Root 1 at  {x,y} = {-0.29, 0.00} 

Root 2 at  {x,y} = { 1.71, 0.00} 

Solve Quadratic Equation by Completing The Square

 3.2     Solving   12x2-17x-6 = 0 by Completing The Square .

 Divide both sides of the equation by  12  to have 1as the coefficient of the first term :

   x2-(17/12)x-(1/2) = 0

Add  1/2  to both side of the equation : 

   x2-(17/12)x = 1/2

Now the clever bit: Take the coefficient of  x , which is  17/12 , divide by two, giving  17/24 , and finally square it giving  289/576 

Add  289/576  to both sides of the equation :

  On the right hand side we have :

   1/2  +  289/576   The common denominator of the two fractions is  576   Adding  (288/576)+(289/576) gives  577/576 

  So adding to both sides we finally get :

   x2-(17/12)x+(289/576) = 577/576

Adding  289/576  has completed the left hand side into a perfect square :

   x2-(17/12)x+(289/576)  =

   (x-(17/24)) • (x-(17/24))  =

  (x-(17/24))2 

Things which are equal to the same thing are also equal to one another. Since

   x2-(17/12)x+(289/576) = 577/576 and

   x2-(17/12)x+(289/576) = (x-(17/24))2 

then, according to the law of transitivity,

   (x-(17/24))2 = 577/576

We'll refer to this Equation as  Eq. #3.2.1  

The Square Root Principle says that When two things are equal, their square roots are equal.

Note that the square root of

   (x-(17/24))2   is

   (x-(17/24))2/2 =

  (x-(17/24))1 =

   x-(17/24)

Now, applying the Square Root Principle to  Eq. #3.2.1  we get:

   x-(17/24) = √ 577/576 

Add  17/24  to both sides to obtain:

   x = 17/24 + √ 577/576 

Since a square root has two values, one positive and the other negative

   x2 - (17/12)x - (1/2) = 0

   has two solutions:

  x = 17/24 + √ 577/576 

   or

  x = 17/24 - √ 577/576 

Note that  √ 577/576 can be written as

  √ 577  / √ 576   which is √ 577  / 24 

Solve Quadratic Equation using the Quadratic Formula

 3.3     Solving    12x2-17x-6 = 0 by the Quadratic Formula .

 According to the Quadratic Formula,  x  , the solution for   Ax2+Bx+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :

                                     

            - B  ±  √ B2-4AC

  x =   ————————

                      2A 

  In our case,  A   =     12

                      B   =   -17

                      C   =   -6 

Accordingly,  B2  -  4AC   =

                     289 - (-288) =

                     577

Applying the quadratic formula :

               17 ± √ 577 

   x  =    ——————

                      24

  √ 577   , rounded to 4 decimal digits, is  24.0208

 So now we are looking at:

           x  =  ( 17 ±  24.021 ) / 24

Two real solutions:

 x =(17+√577)/24= 1.709 

or:

 x =(17-√577)/24=-0.293 

Two solutions were found :

 x =(17-√577)/24=-0.293

 x =(17+√577)/24= 1.709

PLZ mark me as a BRAINLIST

Similar questions