Solve the following quadratic equations : , x≠0, 2
Answers
SOLUTION :
Given : 1/x - 1/(x -2) = 3
(1 × (x-2) - x)/x(x - 2) = 3
[By taking LCM]
(x - 2 - x )/x² - 2x = 3
-2 = 3 (x² - 2x)
3x² - 6x = -2
3x² - 6x + 2 = 0
By using quadratic formula :
x = [- b ±√b² - 4ac]/2a
Here, a = 3 , b= - 6 , c = 2
x = [-(-6) ± √(-6)² - 4 × 3 × 2]/2×3
x = [6 ± √36 - 24]/6
x = [ 6 ± √12]/6
x = [6 ± √4 × 3]/6
x = [6 ± 2√3]/6
x = [2(3 ± √3]/6
x = (3±√3)/3
Hence, the roots of the above quadratic equation are x = (3 + √3)/3 and x = (3 - √3)/3
HOPE THIS ANSWER WILL HELP YOU...
Solution :
Given ,
, x≠0, 2
=> [x-2-x]/[x(x-2)] = 3
=> -2/(x²-2x) = 3
=> -2 = 3(x²-2x)
=> -2 = 3x²-6x
=> 3x² - 6x + 2 = 0
Compare above equation
with ax² + bx + c = 0 , we get
a = 3 , b = -6 , c = 2
Discreminant (D) = b²-4ac
= (-6)² - 4×3×2
= 36 - 24
= 12
Now ,
By Quadratic Formula :
x = [-b±√D]/2a
= [-(-6)±√12]/(2×3)
= ( 6 ± 2√3 )/6
= [2(3±√3)/6
= ( 3 ± √3 )/3
Therefore ,
x = ( 3 + √3 )/3 Or
x = ( 3-√3 )/3
••••