Math, asked by BrainlyProgrammer, 1 month ago

Solve the following quadratic equations.
 \red{ \boxed \dag }\: \green{  \tt \:  {x}^{2}  + 3x - 21 = 0}
 \large \bold{  \dag }\:   \small \:  \tt \: prove \: that \:  \bold{ \tt \:  \orange{x =  \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a} }}
No Spamming Allowed.
Good luck!!​

Answers

Answered by assingh
23

Topic :-

Quadratic Equation

To Prove :-

x=\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}

Proof :-

General form of quadratic equation :

ax² + bx + c = 0 where a ≠ 0.

Divide by 'a' in LHS and RHS,

\dfrac{ax^2}{a}+\dfrac{bx}{a}+\dfrac{c}{a}=\dfrac{0}{a}

x^2+\dfrac{bx}{a}+\dfrac{c}{a}=0

Add and Subtract (b/2a)²,

x^2+\dfrac{bx}{a}+\dfrac{c}{a}+\left( \dfrac{b}{2a}\right )^2-\left( \dfrac{b}{2a}\right )^2=0

Rearrange it,

x^2+\dfrac{bx}{a}+\left( \dfrac{b}{2a}\right )^2+\dfrac{c}{a}-\left( \dfrac{b}{2a}\right )^2=0

Write (bx/a) as 2(x)(b/2a),

x^2+2\dfrac{bx}{2a}+\left( \dfrac{b}{2a}\right )^2+\dfrac{c}{a}-\left( \dfrac{b}{2a}\right )^2=0

We can observe + 2pq + = (p + q)² forming here,

x^2+2(x)\left(\dfrac{b}{2a}\right)+\left( \dfrac{b}{2a}\right )^2+\dfrac{c}{a}-\left( \dfrac{b}{2a}\right )^2=0

\left( x+\dfrac{b}{2a} \right )^2+\dfrac{c}{a}-\left( \dfrac{b}{2a}\right )^2=0

Transposing (c/a) - (b/2a)² to RHS,

\left( x+\dfrac{b}{2a} \right )^2=\left( \dfrac{b}{2a}\right )^2-\dfrac{c}{a}

Taking LCM in RHS and solving it,

\left( x+\dfrac{b}{2a} \right )^2=\dfrac{b^2}{4a^2}-\dfrac{c}{a}

\left( x+\dfrac{b}{2a} \right )^2=\dfrac{b^2-4ac}{4a^2}

Taking Root both sides,

\sqrt{\left( x+\dfrac{b}{2a} \right )^2}=\sqrt{\dfrac{b^2-4ac}{4a^2}}

x+\dfrac{b}{2a} =\pm\sqrt{\dfrac{b^2-4ac}{4a^2}}

Transpose (b/2a) to RHS,

x =-\dfrac{b}{2a}\pm\sqrt{\dfrac{b^2-4ac}{4a^2}}

x =-\dfrac{b}{2a}\pm\dfrac{\sqrt{b^2-4ac}}{2a}

Taking LCM in RHS and solving,

x =\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}

Hence, Proved !!

--------------------------------------------------------------

Given :-

x² + 3x - 21 = 0

To Find :-

Value of 'x'.

Solution :-

Let us solve using the formula which we have proved above.

On comparing with general equation,

a = 1

b = 3

c = -21

Applying formula,

x=\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}

x=\dfrac{-3 \pm \sqrt{(3)^2-4(1)(-21)}}{2(1)}

x=\dfrac{-3 \pm \sqrt{9+84}}{2}

x=\dfrac{-3 \pm \sqrt{93}}{2}

Answer :-

So, value of x are :-

x=\dfrac{-3 + \sqrt{93}}{2}\:\:and

x=\dfrac{-3 - \sqrt{93}}{2}

Answered by BrainlyFlash
13

Question :

Solve the following quadratic equations.

 { \tt \: {x}^{2} + 3x - 21 = 0}

Solution :

 \dag \tt \:   \: {x}^{2} + 3x - 21 = 0

Using quadratic formula

 \tt \: x = \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}

Here ,

  • a = 1
  • b = 3
  • c = -21

 : \leadsto \sf \: x = \dfrac{ - 3 \pm \sqrt{ {3}^{2} - 4 \times 1 \times  - 21 } }{2 \times 1}

  : \leadsto \sf x = \dfrac{ - 3 \pm \sqrt{ 9 - 84 } }{2}

  : \leadsto \sf x = \dfrac{ - 3 \pm \sqrt{ 93 } }{2}

 : \leadsto \sf x = \dfrac{ - 3 \pm 9.64 }{2}

Taking positive

 : \leadsto \sf x = \dfrac{ - 3  +  9.64 }{2}

 : \leadsto \sf x = \dfrac{ 6.64 }{2}

 : \leadsto \sf x =  3.32

Taking negative

 : \leadsto \sf x = \dfrac{ - 3   -  9.64 }{2}

 : \leadsto \sf x = \dfrac{  - 12.64 }{2}

 : \leadsto \sf x =   - 6.32

 \boxed{ \sf \: x = 3.32 \: or \:  - 6.32}

_____________________

Question :

 \large \bold{ \dag }\: \small \: \tt \: prove \: that \:  \\ \bold{ \tt \: {x = \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a} }}

Solution :

Let the quadratic equation be ax² + bx + c , a≠0

 \hookrightarrow \sf a {x}^{2}   + bx + c = 0

 \hookrightarrow  \sf a {x}^{2}   + bx =  - c \:  \:  \:  \:   ( transposing \: the \: constant \: term)

   \hookrightarrow\sf \: {x}^{2}  +  \dfrac{b}{a} x  = -   \dfrac{c}{a}  \:  \:  \:  \: (dividing \: by \: cofficient \: of \:  {x}^{2} )

Adding { \sf\frac{ {b}^{2} }{4{a}^{2}}} to both sides to make LHS as perfect square.

 \hookrightarrow \sf \:  {x}^{2}  \times  \dfrac{b}{a} x +  \dfrac{ {b}^{2} }{4 {a}^{2} }  =  \dfrac{ {b}^{2} }{4 {a}^{2} }  -  \dfrac{c}{a}

 \hookrightarrow \sf \:  {(x +  \dfrac{b}{2a} )}^{2}  =  \dfrac{ {b}^{2}  - 4ac}{4 {a}^{2} }

Taking the square root of both sides

 \hookrightarrow \sf \: x +  \dfrac{b}{2a}  =  \pm \sqrt \dfrac{ {b}^{2} - 4ac }{2a}

 \hookrightarrow \sf \: x =  \dfrac{ - b}{2a}  \pm \:  \sqrt{ \dfrac{ {b}^{2}  - 4ac}{2a} }

 \implies { \tt {x}} =  \mathfrak{ \dfrac{ - b \:  \pm  \:  \sqrt{ {b}^{2}  - 4ac} }{2a} }

 { \large{ \purple{  \boxed{ \sf \dag \: hence \: proved \dag}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Hope it's help

Please mark me as brainliest (๑╹◡╹๑)

Similar questions