Math, asked by sahil8350, 10 months ago

solve the following quadratic equations
using
formula:
2x² + x-1÷5 =0​

Answers

Answered by amitkumar44481
9

SolutioN :

We have,

 \tt  \dagger \:  \:  \:  \:  \: 2 {x}^{2}  + x -  \dfrac{1}{5}  = 0.

 \tt   : \implies 2 {x}^{2}  + x -  \dfrac{1}{5}  = 0.

 \tt   : \implies  \dfrac{10  {x}^{2} + 5x - 1  }{5}  = 0.

 \tt   : \implies 10 {x}^{2}  +5 x -1 = 0.

★ Compare with General Equation.

 \tt  \dagger \:  \:  \:  \:  \: a {x}^{2}  + bx + c = 0.

Where as,

  • a = 10.
  • b = 5.
  • c = - 1.

Now,

 \tt :  \implies x =  \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}

 \tt :  \implies x =  \dfrac{ - 5\pm \sqrt{ {5}^{2} - 4 \times  - 1 \times 10 } }{2 \times 10}

 \tt :  \implies x =  \dfrac{ - 5 \pm \sqrt{ 25  + 40} }{20}

 \tt :  \implies x =  \dfrac{ - 5 \pm \sqrt{ 65 } }{10}

Therefore, the value of x = - 5 ± √65 / 10.

Similar questions