Math, asked by supkar766, 1 year ago

Solve the following question

Attachments:

Answers

Answered by siddhartharao77
4
Given :  \lim_{n \to 2} ( \frac{1}{x - 2} -  \frac{2(2x - 3)}{x^3 - 3x^2 + 2x} )

= \ \textgreater \   \frac{1}{x - 2} -  \frac{4x - 6}{x(x - 1)(x - 2)}

= \ \textgreater \   \frac{1 * x(x - 1)}{x(x - 2)(x - 1)} -  \frac{4x - 6}{x(x - 2)(x - 1)}

= \ \textgreater \   \frac{x(x - 1) - (4x - 6)}{x(x - 2)(x - 1)}

= \ \textgreater \   \frac{x^2 - x - 4x + 6}{x(x - 2)(x - 1)}

= \ \textgreater \   \frac{x^2 - 5x + 6}{x(x - 2)(x - 1)}

= \ \textgreater \   \frac{(x - 2)(x - 3)}{x(x - 2)(x - 1)}

= \ \textgreater \   \frac{x - 3}{x(x - 2)}

 \frac{x - 3}{x^2 - 2x}

Now,

= \ \textgreater \   \lim_{n \to 2}  \frac{x - 3}{x^2 - x}

= \ \textgreater \   \frac{2 - 3}{(2)^2 - 2}

= \ \textgreater \   \frac{-1}{4 - 2}

= \ \textgreater \   \frac{-1}{2}




Hope this helps!

supkar766: ok.thnks
siddhartharao77: Thanks for ur comments!
supkar766: your welcome
siddhartharao77: r u new to brainly?
supkar766: yes..i m new
siddhartharao77: In brainly, there is an option called thanks.
supkar766: where
siddhartharao77: Nothing..leave it!..
siddhartharao77: Bye!
supkar766: bye
Similar questions