Math, asked by ishma56, 1 month ago

solve the following question​

Attachments:

Answers

Answered by arpanaial06
0

Answer:

hope it will help you dear

Attachments:
Answered by mathdude500
5

Given Question :-

Solve for x :-

\rm :\longmapsto\: {2}^{2x} + 3. {2}^{x}  - 4 = 0

 \red{\large\underline{\sf{Solution-}}}

Consider the equation,

\rm :\longmapsto\: {2}^{2x} + 3. {2}^{x}  - 4 = 0

can be rewritten as

\rm :\longmapsto\: {( {2}^{x}) }^{2}  + 3. {2}^{x}  - 4 = 0

Let we assume that

 \red{\rm :\longmapsto\:\boxed{ \tt{ \:  {2}^{x} \:  =  \: y \: }}}

So, above equation can be rewritten as

\rm :\longmapsto\: {y}^{2} + 3y - 4 = 0

\rm :\longmapsto\: {y}^{2} + 4y - y - 4 = 0

\rm :\longmapsto\:y(y + 4) - 1(y + 4) = 0

\rm :\longmapsto\:(y + 4)(y - 1) = 0

\bf\implies \:y = 1 \:  \: or \:  \: y =  - 4

\bf\implies \: {2}^{x}  = 1 \:  \: or \:  \:  {2}^{x}  =  - 4 \:  \{rejected \}

\bf\implies \: {2}^{x}  =  {2}^{0}  \:

\bf\implies \: x = 0  \:

Verification :-

Given equation is

\rm :\longmapsto\: {2}^{2x} + 3. {2}^{x}  - 4 = 0

On substituting x = 0, we get

\rm :\longmapsto\: {2}^{2 \times 0} + 3. {2}^{0}  - 4 = 0

\rm :\longmapsto\: {2}^{0} + 3 \times 1  - 4 = 0

\rm :\longmapsto\: 1 + 3  - 4 = 0

\rm :\longmapsto\: 4 - 4 = 0

\bf\implies \:0 = 0

Hence, Verified

Similar questions