Math, asked by BrainlyProgrammer, 3 months ago

Solve the following question by factorisation:-

 \dfrac{x + 1}{x - 1}  +  \dfrac{x - 2}{x + 2}  = 3

Answers

Answered by Anonymous
76

Given Equation

 \tt \to \:  \dfrac{(x + 1)}{(x - 1)}  +  \dfrac{(x - 2)}{(x + 2)}  = 3

Now Take LCM

 \tt\to \:  \dfrac{(x + 1)(x + 2) + (x - 2)(x - 1)}{(x - 1)(x + 2)}  = 3

 \tt \to \:  \dfrac{ {x}^{2}  + 2x + x + 2 +  {x}^{2} - x - 2x + 2 }{ {x}^{2}  + 2x - x - 2}  = 3

 \tt \to \:  \dfrac{ {x}^{2}  + 3x + 2 +  {x}^{2}  - 3x + 2}{ {x}^{2}  + x - 2 }  = 3

 \tt \to \:  \dfrac{ 2{x}^{2}  + 4}{ {x}^{2}  + x - 2}  = 3

Using Cross multiplication

 \tt \to \:  2{x}^{2}  + 4 = 3( {x}^{2}  + x - 2)

 \tt \to \:  2{x}^{2}  + 4 = 3 {x}^{2}  + 3x - 6

 \tt \to \: 3 {x}^{2}  -  2{x}^{2}  + 3x - 6 - 4 = 0

 \tt \to \: {x}^{2}  + 3x - 10 = 0

Now Using Middle term Splitting

 \tt \to \:  {x}^{2}  + 5x - 2x - 10 = 0

 \tt \to \: x(x + 5) - 2(x + 5) = 0

 \tt \to \: (x - 2)(x + 5) = 0

 \tt \to \: (x - 2) = 0 \: and \: (x + 5) = 0

 \tt \to \: x = 2  \: and \: x =  - 5

Answer

\tt \to \: x = 2  \: and \: x =  - 5

Answered by saanvigrover2007
55

\large {\pmb{\sf{Question:}}}

 \sf\dfrac{x + 1}{x - 1} + \dfrac{x - 2}{x + 2} = 3

━━━━━━━━━━━━━━━━━━━━━━━━━━

\large{\pmb{\sf{Final \: Solution:}}}

\red \bigstar\color{green} \boxed{ \sf \purple{x =  - 5}} \\ \red \bigstar\color{green} \boxed{ \sf \purple{x = 2}}

━━━━━━━━━━━━━━━━━━━━━━━━━━

\large \pmb{\sf{Step-by-step \; Solution:}}

  \sf : \leadsto \:  \dfrac{x + 1}{x - 1} + \dfrac{x - 2}{x + 2} = 3

  \color{maroon}\footnotesize \boxed{ \textsf \color{green}{Taking the LCM of (x-1) and (x+2) i.e. combining the terms}}

\sf{: \leadsto \:  \frac{(x + 1 )(x + 2) + (x - 1)(x - 2)}{(x - 1)(x + 2)} = 3 } \\

\sf{: \leadsto \:  \frac{ {x}^{2}  + 2 x + x + 2 +  {x}^{2} - x - 2x + 2 }{ {x}^{2} + 2x - x - 2 } = 3 } \\

\sf{: \leadsto \:  \frac{2 {x}^{2}  + 4}{ {x}^{2} + x  -  2 } = 3} \\

  \color{maroon}\footnotesize \boxed{ \sf \color{green}{Transposing  \: x^2 + x - 2  \: to  \: another \:  side}}

 \sf :  \leadsto2 {x}^{2}  + 4 = 3( {x}^{2} + x - 2)

 \sf :  \leadsto 2 {x}^{2}  + 4 = 3 {x}^{2}  + 3x - 6

  \color{maroon}\footnotesize \boxed{ \sf \color{green}{Transposing \:2x^2 + 4 \: to \: another \: side}}

 \sf :  \leadsto 0 = 3 {x}^{2}  + 3x - 6 - 2 {x}^{2}  - 4

  \sf:  \leadsto {x}^{2}  + 3x - 10 = 0

  \color{maroon}\footnotesize \boxed{ \sf \color{green}{Splitting \:  the \:  Middle \:  Term}}

 \sf:  \leadsto  {x}^{2}  + 5x - 2x - 10 = 0

  \color{maroon}\footnotesize \boxed{ \textsf \color{green}{Taking x as common from x² + 5x and 2 from 2x - 10}}

 \sf:  \leadsto x( x + 5) - 2(x + 5) = 0

  \pink \bigstar \:  \color{purple}\boxed{ \sf:  \color{blue}\leadsto (x  - 2 )(x  +  5) = 0}

\pink \bigstar  \: \color{purple}\boxed{\sf \color{blue}: \leadsto x = 2 \: \: \: ; \: \: \: x = -5}

━━━━━━━━━━━━━━━━━━━━━━━━━━

 \sf  \color{azure}\fcolorbox{pink}{black}{  \:    \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:   \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: @Saanvigrover2007 \:  \:  \:  \:  \:  \:  \:  \:  \:   \:    \:  \:  \:  \:  \:  \:  \:  \:  \: \: \:  \:}

Similar questions