Math, asked by brainlystarking, 3 months ago

Solve the following question by factorisation:- \dfrac{x + 1}{x - 1} + \dfrac{x - 2}{x + 2} = 3

Answers

Answered by Anonymous
18

Given Equation

 \tt \to \:  \dfrac{(x + 1)}{(x - 1)}  +  \dfrac{(x - 2)}{(x + 2)}  = 3

Now Take LCM

 \tt\to \:  \dfrac{(x + 1)(x + 2) + (x - 2)(x - 1)}{(x - 1)(x + 2)}  = 3

 \tt \to \:  \dfrac{ {x}^{2}  + 2x + x + 2 +  {x}^{2} - x - 2x + 2 }{ {x}^{2}  + 2x - x - 2}  = 3

 \tt \to \:  \dfrac{ {x}^{2}  + 3x + 2 +  {x}^{2}  - 3x + 2}{ {x}^{2}  + x - 2 }  = 3

 \tt \to \:  \dfrac{ 2{x}^{2}  + 4}{ {x}^{2}  + x - 2}  = 3

Using Cross multiplication

 \tt \to \:  2{x}^{2}  + 4 = 3( {x}^{2}  + x - 2)

 \tt \to \:  2{x}^{2}  + 4 = 3 {x}^{2}  + 3x - 6

 \tt \to \: 3 {x}^{2}  -  2{x}^{2}  + 3x - 6 - 4 = 0

 \tt \to \: {x}^{2}  + 3x - 10 = 0

Now Using Middle term Splitting

 \tt \to \:  {x}^{2}  + 5x - 2x - 10 = 0

 \tt \to \: x(x + 5) - 2(x + 5) = 0

 \tt \to \: (x - 2)(x + 5) = 0

 \tt \to \: (x - 2) = 0 \: and \: (x + 5) = 0

 \tt \to \: x = 2  \: and \: x =  - 5

Answer

\tt \to \: x = 2  \: and \: x =  - 5

Similar questions