Math, asked by madhav5245, 8 hours ago

Solve the following question

1 +  {3}^{ \frac{x}{2} }  =  {2}^{x}

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\:1 +  {\bigg[3\bigg]}^{\dfrac{x}{2} } =  {2}^{x}

can be further rewritten as

\rm :\longmapsto\: {1}^{x}  +  {\bigg[3\bigg]}^{\dfrac{x}{2} } =  {2}^{x}

can be further rewritten as

\rm :\longmapsto\: \dfrac{{1}^{x}  +  {\bigg[3\bigg]}^{\dfrac{x}{2} }}{ {2}^{x} }  =  1 \\

\rm :\longmapsto\:\dfrac{ {1}^{x} }{ {2}^{x} } + \dfrac{{\bigg[3\bigg]}^{\dfrac{x}{2} }}{ {2}^{x} }  = 1

\rm :\longmapsto\: {\bigg[\dfrac{1}{2} \bigg]}^{x}  + \dfrac{ {( \sqrt{3})}^{x} }{ {2}^{x} }  = 1

\rm :\longmapsto\: {\bigg[\dfrac{1}{2} \bigg]}^{x}  +  {\bigg[\dfrac{ \sqrt{3} }{2} \bigg]}^{x}   = 1

We know, from Trigonometric ratios of Standard angles,

 \purple{\rm :\longmapsto\:sin\bigg[\dfrac{\pi}{3} \bigg] = \dfrac{ \sqrt{3} }{2}}

and

 \purple{\rm :\longmapsto\:cos\bigg[\dfrac{\pi}{3} \bigg] = \dfrac{1}{2}}

So, using this ,we get

\rm :\longmapsto\: {\bigg(cos\dfrac{\pi}{3}  \bigg) }^{x} + {\bigg(sin\dfrac{\pi}{3}  \bigg) }^{x}  = 1

We know,

 \purple{\rm :\longmapsto\: {sin}^{2}x +  {cos}^{2}x = 1 \:  \:  \forall \: x \:  \in \: R} \\

\bf\implies \:x \:  =  \: 2 \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Answered by XxitzZBrainlyStarxX
6

Question:-

Solve the equation:

 \sf \large 1 + 3 {}^{ \frac{x}{2} }  = 2 {}^{x} .

Given:-

The Equation

 \sf \large 1 + 3 {}^{ \frac{x}{2} }  = 2 {}^{x} .

Solution:-

We have,

 \sf \large 1 + 3 {}^{ \frac{x}{2} }  = 2 {}^{x}

Dividing the both sides by 2^x, then we obtain.

 \sf \large ⇒ \frac{1}{2 {}^{x} }  +  \frac{3 {}^{ \frac{3}{2} } }{2 {}^{x} }  = 1

 \sf \large ⇒ \bigg( \frac{1}{2}  \bigg) {}^{x}  +  \bigg( \frac{3}{4}  \bigg) {}^{ \frac{x}{2} }  = 1

 \sf  \large  ⇒\bigg( \frac{1}{2} \bigg ) {}^{x}  +  \bigg( \frac{ \sqrt{3} }{2}  \bigg) {}^{x}  = 1

 \sf \large⇒(cos \frac{\pi}{3} ) {}^{x}  + (sin \frac{\pi}{3} ) {}^{x}  = 1

which us possible only when x = 2.

Answer:-

Hence, x = 2 is only solution of this equation.

Hope you have satisfied.

Similar questions