Math, asked by madhav5245, 9 days ago

Solve the following question

 {x}^{2}  - 5 |x|  + 6 = 0
and hence find number of solutions of this equation.

Answers

Answered by arjunraj9676
0
Two case
If x>o and x
Case 1)x>0
Then |x|=x
So solve equation x^2-5x+6=0
We get x=2,x=3

Case2)x<0
Then |x |=(-x)
Solve eqxn. x^2-5(-x)+6=0
x^2+5x+6=0
X= -2 ,X= -3


Got it
Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\: {x}^{2} - 5 |x| + 6 = 0

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{  {x}^{2}  =  { |x| }^{2} \: }}} \\

So, using this, we get

\rm :\longmapsto\: { |x| }^{2} - 5 |x| + 6 = 0

Now, its a quadratic in |x|, so using Concept of Splitting of middle terms, we get

\rm :\longmapsto\: { |x| }^{2} - 3 |x|  - 2 |x| + 6 = 0

\rm :\longmapsto\: |x|( |x| - 3) - 2( |x| - 3) = 0

\rm :\longmapsto\:( |x| - 3)( |x| - 2) = 0

\rm\implies \: |x|  = 2 \:  \: or \:  \:  |x|  = 3

\rm\implies \: x \:   =  \:  \pm \: 2 \:  \: or \:  \:  x \:   = \:  \pm \:  3

So,

\bf\implies \:x =  - 2, \:  - 3, \: 2, \: 3

\bf\implies \:Number \: of \: solutions \:  =  \: 4

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions