Math, asked by vidhalemangesh, 3 months ago

solve the following question=
x^2+6√2x+10​

Answers

Answered by roshankaran871
0

Answer:

x =  \frac{ - 6 \sqrt{2}  +   \sqrt{112} }{2}  \\  x =  \frac{ - 6 \sqrt{2}    -  \sqrt{112} }{2}

Step-by-step explanation:

Given, \\  x {}^{2}  + 6 \sqrt{2} x - 10 \\  On  \: comparing \:  to \:  the \:  standard \:  form ax {}^{2} + by + c = 0 \\ we \:  get \: a = 1 \: b = 6 \sqrt{2}  \: c =  - 10 \\ By  \: Quadratic \:  Equation  \: Formula, \\ x =  \frac{ - b +  -  \sqrt{b {}^{2} - 4ac } }{2a}  \\ x =  \frac{ - 6 \sqrt{2}  +  -  \sqrt{(6 \sqrt{2}) {}^{2}   - 4(1)( - 10)} }{2(1)}  \\  = x =  \frac{ - 6 \sqrt{2}  +  -  \sqrt{36 \times 2 + 40} }{2}  \\  = x =  \frac{ - 6 \sqrt{2}  +  -  \sqrt{72  + 40} }{2}  \\  = x =  \frac{ - 6 \sqrt{2}  +  -  \sqrt{112} }{2}  \\ Therefore \:  x =  \frac{ - 6 \sqrt{2}  +   \sqrt{112} }{2}  \\  x =  \frac{ - 6 \sqrt{2}    -  \sqrt{112} }{2}

Hope this will help you!!

Similar questions