Math, asked by NilayM4, 17 days ago

Solve the following questions.

1) If 2 is a root of the quadratic equation 3x" + px - 8 = 0 and the quadratic equation 4x” – 2px + k = 0 has real and equal roots, find k. 2​

Answers

Answered by amansharma264
39

EXPLANATION.

2 is a root of the quadratic equation 3x² + px - 8 = 0.

Quadratic equation 4x² - 2px + k = 0 has real and equal roots.

As we know that,

Put the value of x = 2 in equation, we get.

⇒ 3x² + px - 8 = 0.

⇒ 3(2)² + p(2) - 8 = 0.

⇒ 3(4) + 2p - 8 = 0.

⇒ 12 + 2p - 8 = 0.

⇒ 4 + 2p = 0.

⇒ 2p = - 4.

⇒ p = - 2.

Put the values of the equation (2), we get.

⇒ 4x² - 2px + k = 0.

⇒ 4x² - 2(-2)(x) + k = 0.

⇒ 4x² + 4x + k = 0.

For real and equal roots.

⇒ D = 0 Or b² - 4ac = 0.

⇒ (4)² - 4(4)(k) = 0.

⇒ 16 - 16k = 0.

⇒ 16k = 16.

⇒ k = 1.

Values of k = 1.

                                                                                                                     

MORE INFORMATION.

Nature of the roots of quadratic expression.

(1) Roots are real and unequal, if b² - 4ac > 0.

(2) Roots are rational and different, if b² - 4ac is a perfect square.

(3) Roots are real and equal, if b² - 4ac = 0.

(4) If D < 0 Roots are imaginary and unequal Or complex conjugate.

Similar questions