Math, asked by sozain55, 3 months ago

solve the following questions​

Attachments:

Answers

Answered by namanjot6280
1

4y =6.3 + 1.9

4y=8.2

4y=8.2/4

y=2.05

Answered by Anonymous
45

\large\sf\underline{Given\::}

  • \sf\:4y-1.9=6.3

\large\sf\underline{To\:find\::}

  • Value of y = ?

\large\sf\underline{Solution\::}

\sf\:4y-1.9=6.3

  • Let's convert decimal number in fraction form

\sf\implies\:4y-\frac{19}{10}=\frac{63}{10}

  • Now finding LCM of 1 and 10 in LHS

\sf\implies\:\frac{(4y \times 10) - 19}{10}=\frac{63}{10}

  • Multiplying the terms in LHS

\sf\implies\:\frac{40y - 19}{10}=\frac{63}{10}

  • Now Cross multiplying

\sf\implies\:10(40y - 19)=63 \times 10

  • Multiplying and removing brackets

\sf\implies\:400y - 190=630

  • Transposing -190 to RHS it becomes +190

\sf\implies\:400y =630+190

\sf\implies\:400y = 820

  • Transposing 400 to RHS it goes to denominator

\sf\implies\:y = \frac{82\cancel{0}}{40\cancel{0}}

\sf\implies\:y = \cancel{\frac{82}{40}}

\sf\implies\:y = \frac{41}{20}

\small\fbox\red{★\:y\:=\:2.05}

‎ =============================

\large\sf\underline{Verifying\::}

\sf\:4y-1.9=6.3

  • Substituting the value of y as 2.05

\sf\leadsto\:4(2.05)-1.9=6.3

  • Multiplying and removing brackets

\sf\leadsto\:8.2-1.9=6.3

  • Subtracting the terms

\sf\leadsto\:6.3=6.3

\dag\:\underline{\sf Hence\:Verified}

=============================

!! Hope it helps !!

Similar questions