Solve the following questions. (Any one)
1 If a cos 0 + b sin 0 = m and a sin -b cos 0 = n, prove that a(square) + b(square) = m² + n (square)
Answers
Answered by
4
Question: If acosθ + bsinθ = m and asinθ - bcosθ = n. Prove that a² + b² = m² + n²
Solution:
ATQ,
acosθ + bsinθ = m
asinθ + bcosθ = n
LHS = m² + n²
= (acosθ + bsinθ)² + (asinθ - bcosθ)²
= a²cos²θ + b²sin²θ + 2acosθbsinθ + a²sin²θ + b²cos²θ - 2asinθbcosθ
= a²cos²θ + a²sin²θ + b²sin²θ + b²cos²θ + 2acosθbsinθ - 2asinθbcosθ
2acosθbsinθ - 2asinθbcosθ Gets cancelled.
= a²(cos²θ + sin²θ) + b²(sin²θ + cos²θ)
We know that sin²θ + cos²θ = 1
= a²(1) + b²(1)
= a² + b²
∴ a² + b² = m² + n²
LHS = RHS.
Hence Proved.
Answered by
2
Answer:
Refer to the attachment for solution ❤❤❤
Hope it helps you ★ ★ ★
Attachments:
Similar questions