Solve the following questions with clear explanations...
Points: 25 ☺
Attachments:
Answers
Answered by
1
16 a+18d=3(a+5d)
a+18d=3a+15d
2a=3d
Now. a+8d=19
a=19-8d
2(19-8d)=3d
38=16d+3d
38=19d
d=2
a=3
AP=3,5,7,9..
17.a+7d=41
a+12d=61
d=4 a=13 19th term=85
Sum=n/2(a+l)
=19/2*(13+85)
=19*49=931..
20. 3n²+5n
=3n²+5n-[3(n-1)²+5(n-1)}
=3n²+5n-3n²-3+6n-5n+5
=6n+2 divide by 2
ath term=3n+1
d =3n+1-[3(n-1)+1
=3n+1-3n+1-1
d=1 answer.
21. let three no.=a,a-d,a+d
a+a-d+a+d=15
3a=15
a=5
a²+(a-d)²+(a+d)²=93
25+25+d² -10d +25+d²+10d=93
2d²=93-75
d²=9
d=+ve or -ve 9
a+18d=3a+15d
2a=3d
Now. a+8d=19
a=19-8d
2(19-8d)=3d
38=16d+3d
38=19d
d=2
a=3
AP=3,5,7,9..
17.a+7d=41
a+12d=61
d=4 a=13 19th term=85
Sum=n/2(a+l)
=19/2*(13+85)
=19*49=931..
20. 3n²+5n
=3n²+5n-[3(n-1)²+5(n-1)}
=3n²+5n-3n²-3+6n-5n+5
=6n+2 divide by 2
ath term=3n+1
d =3n+1-[3(n-1)+1
=3n+1-3n+1-1
d=1 answer.
21. let three no.=a,a-d,a+d
a+a-d+a+d=15
3a=15
a=5
a²+(a-d)²+(a+d)²=93
25+25+d² -10d +25+d²+10d=93
2d²=93-75
d²=9
d=+ve or -ve 9
Answered by
11
16. Let 'a' be the 1st term of the AP and 'd' be the common difference.
So 9th term --
a + 8d = 19 -------[i]
Now,A/Q
a + 18d = 3 [ a + 5d ]
a + 18d = 3a + 15d
- 2a + 3d = 0
2a - 3d = 0 -----[ii]
Equating [i] and [ii],
19d = 38
d = 2
2a - 3 x 2 = 0
2a = 6
a = 3
So the AP is 3 , 5 , 7, 9 .......
17.Let 'a' be the 1st term and 'd' be the common difference of the AP.
8th term = a + 7d = 41 -------[i]
a + 12d = 61 -----------[ii]
Solving [i] and [ii]
5d = 20
d = 4
a + 12 x 4 = 61
a = 61 - 48
a = 13
19th term, l = a + 18d = 13 + 18 x 4 = 85
Sum = n/2 [ a + l ] = 19/2 [ 13 + 85] = 19/2 x 98 = 19 x49 = 931
18. first term,a = 108
d = 9
last term, l = 999
Let the number of terms be 'n'
So nth term = 999
999 = 108 + [n - 1]9
999 = 108 + 9n - 9
999 = 99 + 9n
9n = 900
n = 100
Sum = n/2 [ a + l] = 100/2 [ 108 + 999] = 50 x 1107 = 55350
19. Let 2k - 7 = a
k + 5 = b
3k + 2 = c
So , a + c = 2b
2k - 7 + 3k + 2 = 2 [ k + 5]
5k - 5 = 2k + 10
3k = 15
k = 5
Value of K = 5
20 . Sn = 3n² + 5n
S₁ = 3 x 1¹ + 5 x 1 = 3 + 5 = 8
S₂ = 3 x 2² + 5 x 2 = 12 + 10 =22
a₁ = 8
a₂ = 22 - 8 = 14
d = 14 - 8 = 6
So the common difference is 6
21. Let the first 3 terms be a - d , a , a + d
So their sum --
a - d+ a + a + d = 15
3a = 15
a = 5
Now sum of the squares ---
[a - d]² + a² + [a + d]² = 93
a² + d² - 2ad + a² + a² + d² + 2ad = 93
3a² + 2d² = 93
3 x 5² + 2d² = 93
75 + 2d² = 93
2d² = 18
d² = 9
d = 3 or d = -3
Now AP can be two types
1st AP -- 5, 5 + 3 , 5 + 6..... = 5 , 8 , 11,13......
2nd AP -- 5 , 5 - 3 , 5 - 6.... = 5 , 2 , -1 , -4......
Hope This Helps You
So 9th term --
a + 8d = 19 -------[i]
Now,A/Q
a + 18d = 3 [ a + 5d ]
a + 18d = 3a + 15d
- 2a + 3d = 0
2a - 3d = 0 -----[ii]
Equating [i] and [ii],
19d = 38
d = 2
2a - 3 x 2 = 0
2a = 6
a = 3
So the AP is 3 , 5 , 7, 9 .......
17.Let 'a' be the 1st term and 'd' be the common difference of the AP.
8th term = a + 7d = 41 -------[i]
a + 12d = 61 -----------[ii]
Solving [i] and [ii]
5d = 20
d = 4
a + 12 x 4 = 61
a = 61 - 48
a = 13
19th term, l = a + 18d = 13 + 18 x 4 = 85
Sum = n/2 [ a + l ] = 19/2 [ 13 + 85] = 19/2 x 98 = 19 x49 = 931
18. first term,a = 108
d = 9
last term, l = 999
Let the number of terms be 'n'
So nth term = 999
999 = 108 + [n - 1]9
999 = 108 + 9n - 9
999 = 99 + 9n
9n = 900
n = 100
Sum = n/2 [ a + l] = 100/2 [ 108 + 999] = 50 x 1107 = 55350
19. Let 2k - 7 = a
k + 5 = b
3k + 2 = c
So , a + c = 2b
2k - 7 + 3k + 2 = 2 [ k + 5]
5k - 5 = 2k + 10
3k = 15
k = 5
Value of K = 5
20 . Sn = 3n² + 5n
S₁ = 3 x 1¹ + 5 x 1 = 3 + 5 = 8
S₂ = 3 x 2² + 5 x 2 = 12 + 10 =22
a₁ = 8
a₂ = 22 - 8 = 14
d = 14 - 8 = 6
So the common difference is 6
21. Let the first 3 terms be a - d , a , a + d
So their sum --
a - d+ a + a + d = 15
3a = 15
a = 5
Now sum of the squares ---
[a - d]² + a² + [a + d]² = 93
a² + d² - 2ad + a² + a² + d² + 2ad = 93
3a² + 2d² = 93
3 x 5² + 2d² = 93
75 + 2d² = 93
2d² = 18
d² = 9
d = 3 or d = -3
Now AP can be two types
1st AP -- 5, 5 + 3 , 5 + 6..... = 5 , 8 , 11,13......
2nd AP -- 5 , 5 - 3 , 5 - 6.... = 5 , 2 , -1 , -4......
Hope This Helps You
Anonymous:
Lol y a long gap
Similar questions