Math, asked by tejas001, 1 year ago

solve the following questions with steps​

Attachments:

Answers

Answered by vedasi
1

Answer:

Step-by-step explanation:

Attachments:
Answered by IamIronMan0
1

Answer:

Let

i =   \int_{0} ^{ \frac{\pi}{2} }  \frac{ {e}^{ \sin(x) } }{ {e}^{ \sin(x) }  +  {e}^{ \cos(x) } }  dx \\ substiute \:  \: x \:  \:  \to \:  \:  \frac{\pi}{2}  + x \\ (property \:  \: a + b - x) \\ i =    \int_{0} ^{ \frac{\pi}{2} }  \frac{ {e}^{ \cos(x) } }{ {e}^{ \sin(x) }  +  {e}^{ \cos(x) } }  dx \\ add \:  \: both \\  \\ 2i = =   \int_{0} ^{ \frac{\pi}{2} }  \frac{ {e}^{ \sin(x)  }{+  {e}^{ \cos(x) } } }{ {e}^{ \sin(x) }  +  {e}^{ \cos(x) } }  dx \\ 2i =    \int_{0} ^{ \frac{\pi}{2} }  1.dx =  \frac{\pi}{2}  \\ i =  \frac{\pi}{4}

Similar questions
Math, 1 year ago