Math, asked by saidaf2020, 2 months ago

solve the following simultaneous equation
1/3x-1/4y+1=0 1/5x+1/2y=4/15

Answers

Answered by BrainlyTwinklingstar
2

Answer

\sf \dashrightarrow \dfrac{1}{3x} - \dfrac{1}{4y} + 1 = 0 \: \: --- (i)

\sf \dashrightarrow \dfrac{1}{5x} + \dfrac{1}{2y} = \dfrac{4}{15} \: \: --- (ii)

Let \sf \dfrac{1}{x} be u.

Let \sf \dfrac{1}{y} be v.

So, the equations become

\sf \dashrightarrow \dfrac{u}{3} + \dfrac{v}{4} = -1

\sf \dashrightarrow \dfrac{u}{5} + \dfrac{v}{2} = \dfrac{4}{15}

By first equation,

\sf \dashrightarrow \dfrac{u}{3} + \dfrac{v}{4} = -1

\sf \dashrightarrow \dfrac{4u + 3v}{12} = -1

\sf \dashrightarrow 4u + 3v = -12

By second equation,

\sf \dashrightarrow \dfrac{u}{5} + \dfrac{v}{2} = \dfrac{4}{15}

\sf \dashrightarrow \dfrac{2u + 5v}{10} = \dfrac{4}{15}

\sf \dashrightarrow 2u + 5v = \dfrac{4}{15} \times 10

\sf \dashrightarrow 2u + 5v = \dfrac{40}{15}

By first equation,

\sf \dashrightarrow 4u + 3v = -12

\sf \dashrightarrow 4u = -12 - 3v

\sf \dashrightarrow u = \dfrac{-12 - 3v}{4}

Now, let's find the value of v by second equation.

\sf \dashrightarrow 2u + 5v = \dfrac{40}{15}

\sf \dashrightarrow 2 \bigg( \dfrac{-12 - 3v}{4} \bigg) + 5v = \dfrac{40}{15}

\sf \dashrightarrow \dfrac{-24 - 6v}{4} + 5v = \dfrac{40}{15}

\sf \dashrightarrow \dfrac{-24 - 6v + 20v}{4} = \dfrac{40}{15}

\sf \dashrightarrow \dfrac{-24 + 14v}{4} = \dfrac{40}{15}

\sf \dashrightarrow -24 + 14v = 4 \bigg( \dfrac{40}{15} \bigg)

\sf \dashrightarrow -24 + 14v = \dfrac{160}{15}

\sf \dashrightarrow -24 + 14v = \dfrac{32}{3}

\sf \dashrightarrow 14v = \dfrac{32}{3} + 24

\sf \dashrightarrow 14v = \dfrac{32 + 72}{3}

\sf \dashrightarrow 14v = \dfrac{104}{3}

\sf \dashrightarrow v = \dfrac{104}{3} \div 14

\sf \dashrightarrow v = \dfrac{104}{3} \times \dfrac{1}{14}

\sf \dashrightarrow v = \dfrac{104}{42}

Now, let's find the value of u by first equation.

\sf \dashrightarrow 4u + 3v = -12

\sf \dashrightarrow 4u + 3 \bigg( \dfrac{104}{42} \bigg) = -12

\sf \dashrightarrow 4u + \dfrac{312}{42} = -12

\sf \dashrightarrow 4u + \dfrac{104}{13} = -12

\sf \dashrightarrow \dfrac{52u + 104}{13} = -12

\sf \dashrightarrow 52u + 104 = -12 \times 13

\sf \dashrightarrow 52u + 104 = -156

\sf \dashrightarrow 52u = -156 - 104

\sf \dashrightarrow 52u = -260

\sf \dashrightarrow u = \dfrac{-260}{52}

\sf \dashrightarrow u = -5

As we know that,

\sf \dashrightarrow \dfrac{1}{x} = u

\sf \dashrightarrow \dfrac{1}{x} = -5

\sf \dashrightarrow x = -5

We also know that,

\sf \dashrightarrow \dfrac{1}{y} = v

\sf \dashrightarrow \dfrac{1}{y} = \dfrac{104}{42}

\sf \dashrightarrow y = \dfrac{42}{104}

\sf \dashrightarrow y = \dfrac{21}{52}

Hence, the values of x and y are -5 and \bf \dfrac{21}{52} respectively.

Similar questions