Math, asked by sujitmr45, 3 months ago

solve the following simultaneous equation​

Attachments:

Answers

Answered by Anonymous
3

Solution

 \bf \: we \: have

 \tt \to \:  \dfrac{10}{x + y}  + \dfrac{2}{x - y}  = 4

 \tt \to \dfrac{15}{x + y}  -  \dfrac{5}{x - y}  =  - 2

 \bf \: let

 \tt \to \:  \dfrac{1}{x + y}  = u \:  \:  \: and  \:  \: \:  \dfrac{1}{x - y}  = v

 \bf \: we \: get

 \tt \to \: 10u + 2v = 4 \:  \:  \:  \:  \:  \: (i) \\  \tt \to \: 15u - 5v =  - 2 \:  \:  \:  \:  \:  \: (ii)

 \bf \: Now \: using \: substitution \: method

 \tt \to \: 2(5u + v) = 4 \:  \:  \:  \:  \:  \: (i)

 \tt \to \: 5u + v = 2

 \tt \to \: v = 2 - 5u \:  \:  \:  \:  \:  \: (iii)

 \bf \: Now \: put \: the \: value \: of \: v \: on \: (ii)eq

 \tt \to \: 15u \:  - 5v \:  =  - 2 \:  \:  \:  \:  \: (ii)

 \tt \to \: 15u - 5(2 - 5u) =  - 2

 \tt \to \: 15u - 10 + 25u =  - 2

 \tt \to \: 40u = 10 - 2

 \tt \to40u = 8

 \tt \to \: u =  \dfrac{8}{40}  =  \dfrac{1}{5}

 \bf \: Now \: put \: the \: value \: of \: u \: on \: (iii)eq

\tt \to \: v = 2 - 5u  \:  \:  \:  \:  \:  \:  \: (iii)

 \tt \to \: v = 2 - 5 \times  \dfrac{1}{5}

 \tt \to \:v =  2 - 1 = 1

 \bf Now \:put \: the \: value \: of \: u \: and \: v \: on \:

 \tt \to \:  \dfrac{1}{x + y}  =  \dfrac{1}{5} \:  \:  \: and  \:  \: \:  \dfrac{1}{x - y}  = 1

 \tt \to \: x + y = 5  \:  \:  \:  \:  \: (i)\\  \tt \to \: x - y = 1 \:  \:  \:  \:  \: (ii)

 \bf \: Add \: both \: the \: equation

 \tt \to \: x + y + x - y = 5 + 1

 \tt \to \: 2x = 6

 \tt \to \: x = 3

 \bf \: Now \: put \: the \: value \: of \: x \: on \: (i)eq

 \tt \to \: x + y = 5

 \tt \to3 + y = 5

 \tt \to \: y = 2

 \bf \: Answer

 \tt \: x = 3 \:  \: and \: y \:  = 2

Similar questions