Math, asked by rishabh1122448800, 5 months ago

solve the following simultaneous equation using cramer's rule 3x- 4y=10 4x+3y=5​

Answers

Answered by ZAYNN
15

Answer:

Cramer's Rule :

⇒ a₁x + b₁y = c₁

⇒ a₂x + b₂y = c₂

value of \bf x=\dfrac{Dx}{D} and \bf y=\dfrac{Dy}{D}

\sf D=\left[\begin{array}{c c}\sf a_1&\sf b_1 \\\sf a_2&\sf b_2\end{array}\right]\quad D_x=\left[\begin{array}{c c}\sf c_1&\sf b_1 \\\sf c_2&\sf b_2\end{array}\right]\quad D_y=\left[\begin{array}{c c}\sf a_1&\sf c_1 \\\sf a_2&\sf c_2\end{array}\right]

\rule{200}{1}

  • 3x - 4y = 10
  • 4x + 3y = 5

  • a₁ = 3 , b₁ = - 4 , c₁ = 10
  • a₂ = 4 , b₂ = 3 , c₂ = 5

\underline{\bigstar\:\textsf{According to the given Question :}}

⠀⠀⠀⌬ Value of x

:\implies\sf x=\dfrac{Dx}{D}\\\\\\:\implies\sf x=\dfrac{\left[\begin{array}{c c}\sf c_1&\sf b_1 \\\sf c_2&\sf b_2\end{array}\right]}{\left[\begin{array}{c c}\sf a_1&\sf b_1 \\\sf a_2&\sf b_2\end{array}\right]}\\\\\\:\implies\sf x =\dfrac{\left[\begin{array}{c c}\sf10&\sf-4\\\sf5&\sf3\end{array}\right]}{\left[\begin{array}{c c}\sf3&\sf-4\\\sf4&\sf3\end{array}\right]}\\\\\\:\implies\sf x = \dfrac{30 - ( - 20)}{9 - ( - 16)}\\\\\\:\implies\sf x = \dfrac{50}{25}\\\\\\:\implies\sf x = 2

⠀⠀⠀⌬ Value of y

:\implies\sf y=\dfrac{Dy}{D}\\\\\\:\implies\sf y=\dfrac{\left[\begin{array}{c c}\sf a_1&\sf c_1 \\\sf a_2&\sf c_2\end{array}\right]}{\left[\begin{array}{c c}\sf a_1&\sf b_1 \\\sf a_2&\sf b_2\end{array}\right]}\\\\\\:\implies\sf y =\dfrac{\left[\begin{array}{c c}\sf3&\sf10\\\sf4&\sf5\end{array}\right]}{\left[\begin{array}{c c}\sf3 &\sf-4\\\sf4&\sf3\end{array}\right]}\\\\\\:\implies\sf y = \dfrac{15 - 40)}{9 - ( - 16)}\\\\\\:\implies\sf y = \dfrac{ - 25}{25}\\\\\\:\implies\sf y = - \:1

\therefore\:\underline{\textsf{Hence, (x , y) will be equal to \textbf{(2 , - 1)}}}.


ItzArchimedes: Awesome !!
Anonymous: Exemplary answer!
Clαrissα: Good!
Similar questions