Math, asked by adityaatram612, 9 months ago

solve the following simultaneous equations: 4/x+3/y=1;6/x-15/y=8​

Answers

Answered by abishekcps
6

4x + 6/y=15...(i)

6x-8/y=14......(ii)

Multiply equation (i) by 'y' on both sides,

4xy + 6 = 15y

4xy - 15y = -6.....(iii)

Multiply equation (ii) by 'y' on both sides,

6xy - 8 = 14y

6xy - 14y = 8.......(iv)

Multiplying equation (iii) by 3 and (iv) by 2,

   12xy - 45y = -18

   12xy -28y = 16

-    (-)     (+)      (-)

-------------------------

            -17 y = - 34

Thus y = 2

Substituting y = 2 in equation (i),

    4x + 6/2 = 15

    4x = 12

Thus x = 3

Solved For x and y

Answered by karankirat345
7

the \: equations \: are  \\  \frac{4}{x}  +  \frac{3}{y}  = 1 \\  \frac{6}{x}  -  \frac{15}{y}  = 8 \\  \\ let  \: \frac{1}{x}  = a \: and\:  \frac{1}{y}  = b \:  \: then \: the \: eqns \: will \: be... \\ 4a + 3b = 1 \\ 6a - 15b = 8 \\  \\ multiply \: the \: eqns \: by \: coefficients \: of \:  \: a \:  \: of \: one \: another.i.e. \\ (4a + 3b = 1) \times 6 \\ (6a - 15b = 8) \times 4 \\  \\  \:  \:  \:  \: 24a + 18b = 6  \:  \:  \:  \: eqn(1)\\  \:  \:  \:  \: 24a - 60b = 32 \:  \:  \:  eqn(2) \\\: \\   \:  \:  \:  \:  \:  \:  \:  (2) - (1) \\  \\ 24a - 60b - 24a - 18b = 32 - 6 \\  - 78b = 26 \\ b =  \frac{26}{ - 78}  \\ b =  \frac{ - 1}{3}  \\  \\ put \: in \: eqn(1) \\ 24a + 18( \frac{ - 1}{3} ) = 6 \\ 24a - 6 = 6 \\ 24a = 6 + 6 = 12 \\ a =  \frac{12}{24} \\ a =  \frac{1}{2}  \\  \\ answer \\ a =  \frac{1}{2}  \\ b =   \frac{ - 1}{3}

Be Brainly!!!

Similar questions