solve the following simultaneous equations
Answers
EXPLANATION.
⇒ 2u + 15v = 17 uv. - - - - - (1).
⇒ 5u + 5v = 16 uv. - - - - - (2).
As we know that,
From equation (1) & (2), we get.
Multiply equation (1) by 5.
Multiply equation (2) by 2.
We get,
⇒ 2u + 15v = 17 uv. - - - - - (1) x 5.
⇒ 5u + 5v = 16 uv. - - - - - (2) x 2.
We get,
⇒ 10u + 75v = 85 uv. - - - - - (3).
⇒ 10u + 10v = 32 uv. - - - - - (4).
Subtract equation (3) & (4), we get.
⇒ 65v = 53 uv.
⇒ 65 = 53 u.
⇒ u = 65/53.
Put the value of u = 65/53 in equation (1), we get.
⇒ 2u + 15v = 17 uv.
⇒ 2(65/53) + 15v = 17(65/53)v.
⇒ 130/53 + 15v = (1105/53)v.
⇒ 130/53 = 1105/53v - 15v.
⇒ 130/53 = v(1105/53 - 15).
⇒ 130/53 = v(1105 - 795/53).
⇒ 130/53 = v(310/53).
⇒ 130 = 310v.
⇒ v = 13/31.
Value of u = 65/53 & v = 13/31.
Answer:
2u + 15v = 17uv , 5u + 5v = 16uv
2u + 15v = 17uv Multiply with 5 on both sides
10u + 75v = 85uv ....(1)
5u + 5v = 16uv Multiply with 2 on both sides
10u + 10v = 32uv ...(2)
10u + 75v = 85uv
- 10u + 10v = 32uv
_______________
0 + 65v = 53uv
substitute in equation