solve the following simultaneous equations
Answers
EXPLANATION.
⇒ x + y = 5 xy. - - - - - (1).
⇒ 3x + 2y = 13 xy. - - - - - (2).
As we know that,
From equation (1) & (2), we get.
Multiply equation (1) by 3.
Multiply equation (2) by 1.
We get,
⇒ x + y = 5 xy. - - - - - (1) x 3.
⇒ 3x + 2y = 13 xy. - - - - - (2) x 1.
We get,
⇒ 3x + 3y = 15 xy. - - - - - (3).
⇒ 3x + 2y = 13 xy. - - - - - (4).
Subtract equation (3) & (4), we get.
⇒ y = 2 xy.
⇒ 1 = 2x.
⇒ x = 1/2.
Put the value of x = 1/2 in equation (1), we get.
⇒ x + y = 5 xy.
⇒ 1/2 + y = 5 (1/2)y.
⇒ 1/2 + y = 5y/2.
⇒ 1/2 = 5y/2 - y.
⇒ 1/2 = 5y - 2y/2.
⇒ 1/2 = 3y/2.
⇒ 1 = 3y.
⇒ y = 1/3.
Values of x = 1/2 & y = 1/3.
Answer:
The give system of equation is
X + y = 5xy ...(1)
3x + 2y = 13xy ...(2)
Multiplying equation (1) by 2 and equation (2) by , we get
2x + 2y = 10xy ...(3)
3x + 2y = 13xy ...(4)
Subtracting equation (3) from equation (4), we get
= 3x - 2x = 13xy - 10xy
= X = 3xy
putting y = 1/3 in equation (1) we get
therefore, solution of the given system of equations is x=1/2, y= 1/3.