Math, asked by OmkarGend, 10 months ago

Solve the following simultaneous equations 4m + 3n = 18; 3m - 2n = 5 ​

Answers

Answered by Anonymous
15

\bold\red{\underline{\underline{Answer:}}}

\bold{m=3 \ and \ n=2 \ is \ the \ solution \ of}

\bold{the \ given \ simultaneous \ equations.}

\bold\orange{Given:}

\bold{=>4m+3n=18}

\bold{=>3m-2n=5}

\bold\pink{To \ find:}

\bold{Value \ of \ m \ and \ n.}

\bold\green{\underline{\underline{Solution}}}

\bold{The \ given \ simultaneous \ equations \ are:}

\bold{=>4m+3n=18...(1)}

\bold{=>3m-2n=5...(2)}

\bold{Multiply \ eq(1) \ by \ 2, \ we \ get}

\bold{=>8m+6n=36...(3)}

\bold{Multiply \ eq(2) \ by \ 3, \ we \ get}

\bold{=>9m-6n=15...(4)}

\bold{Add \ equations \ (3) \ and \ (4)}

\bold{=>8m+6n=36}

\bold{+}

\bold{=>9m-6n=15}

_______________________

\bold{17m=51}

\bold{m=\frac{51}{17}}

\bold{m=3}

\bold{Substituting \ m=3 \ in \ eq(1)}

\bold{4(3)+3n=18}

\bold{3n=18-12}

\bold{3n=6}

\bold{n=\frac{6}{3}}

\bold{n=2}

\bold\purple{\tt{\therefore{m=3 \ and \ n=2 \ is \ the \ solution \ of}}}

\bold\purple{\tt{the \ given \ simultaneous \ equations.}}

Answered by Anonymous
31

\large{\underline{\bf{\purple{Given:-}}}}

✦ Two equations are given as :-

  • 4m + 3n = 18
  • 3m - 2n = 5

\large{\underline{\bf{\purple{To\:Find:-}}}}

✦ we need to find the value of m and n

\huge{\underline{\bf{\red{Solution:-}}}}

 \longmapsto \rm\:\:4m + 3n = 18...........(i)

 \longmapsto \rm\:\3m - 2n = 5..........(ii)\\\\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \underbrace{ \pink{ \rm{By \: using \: elimination \: method \: }}}\:\:\\\\

multiply equation (i) by 3 and equation (ii) by 4

we get,

 \longmapsto \rm\:(4m + 3n = 18) \times 3\: \\  \\\longmapsto \rm\:(3m - 2n = 5) \times 4 \\  \\ \longmapsto \rm\:we \: get  :   \\  \\\longmapsto \rm\:12m + 9n =5 4  .........(iii) \\  \\  \longmapsto \rm\:12m - 8n = 20.........(iv) \\  \\ \rm\:now \: solving \: eq. \: (iii) \: and \: (iv) \\  \\  \rm\:{ \cancel{12m}} + 9n = 54 \\\rm\:{ \cancel{12m}} - 8n = 20 \\  \:  \:  -  \:  \:  \:  \:  \:  \:  \:  \:  \:  + \:  \:  \:  \:  \:  \:    -   \\  \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }  \\ \rm\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 17n  \:  =  34 \\\rm\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  n \:  =   \cancel\frac{34}{17}   \\ \bf\:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: n = 2\\\\

 \rm\:\:Now\: putting\: value\:of\:n \:in\:eq.\:(i)

 \longmapsto \rm\:\:4m + 3n = 18 \\  \\\longmapsto \rm\:\:4m + 3 \times 2 = 18 \\  \\\longmapsto \rm\:\:4m + 6 = 18 \\  \\  \longmapsto \rm\:\:4m = 18 - 6 \\  \\  \longmapsto \rm\:\:4m = 12 \\  \\\longmapsto \rm\:\:m =   \cancel\frac{12}{4}  \\  \\\longmapsto \bf\:\:m = 3  \\\\

Hence,{\green  {\bf{m = 3\:\:and\:\:\:n =2}}}\:\:

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions