Math, asked by samruddhibafna1007, 1 month ago

Solve the following simultaneous equations by using Cramer's method.​

Attachments:

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\dfrac{x + y - 8}{2}  = \dfrac{x + 2y - 14}{3}  = \dfrac{3x - y}{4}

Taking first and second member, we have

\rm :\longmapsto\:\dfrac{x + y - 8}{2}  = \dfrac{x + 2y - 14}{3}

\rm :\longmapsto\:3x + 3y - 24 = 2x + 4y - 28

\bf\implies \:x - y =  - 4 -  -  - (1)

Now, Taking second and third member, we have

\rm :\longmapsto\: \dfrac{x + 2y - 14}{3}  = \dfrac{3x - y}{4}

\rm :\longmapsto\:4x + 8y - 56 = 9x - 3y

\bf\implies \:5x - 11y =  - 56 -  -  - (2)

Now we have equations as

 \red{\rm :\longmapsto\:x - y =  - 4}

and

 \red{\rm :\longmapsto\:5x - 11y =  - 56}

The matrix form of the above equation is

\rm :\longmapsto\:\bigg[ \begin{matrix}1& - 1 \\ 5& - 11 \end{matrix} \bigg]\begin{gathered}\sf \left[\begin{array}{c}x\\y\end{array}\right]\end{gathered} = \begin{gathered}\sf \left[\begin{array}{c} - 4\\ - 56\end{array}\right]\end{gathered}

where,

 \red{\rm :\longmapsto\:A = \bigg[ \begin{matrix}1& - 1 \\ 5& - 11 \end{matrix} \bigg]}

 \red{\rm :\longmapsto\:B = \begin{gathered}\sf \left[\begin{array}{c} - 4\\ - 56\end{array}\right]\end{gathered}}

 \red{\rm :\longmapsto\:X = \begin{gathered}\sf \left[\begin{array}{c}x\\y\end{array}\right]\end{gathered}}

So,

\rm :\longmapsto\: |A| = \begin{array}{|cc|}\sf 1 &\sf  - 1  \\ \sf 5 &\sf  - 11 \\\end{array} =  - 11 + 5 =  - 6

\bf\implies \: |A|  \: \ne \: 0

It means, system of equations is consistent having unique solution.

So, Consider

\rm :\longmapsto\: D_1  = \begin{array}{|cc|}\sf  - 4 &\sf  - 1  \\ \sf  - 56 &\sf  - 11 \\\end{array}

\rm \:  =  \:44  - 56

\rm \:  =  \: -  \: 12

Now, Consider

\rm :\longmapsto\: D_2  = \begin{array}{|cc|}\sf 1 &\sf  - 4  \\ \sf 5 &\sf  - 56 \\\end{array}

\rm \:  =  \: - 56 - ( - 20)

\rm \:  =  \: - 56  + 20

\rm \:  =  \: - 36

Hence,

\bf\implies \:x = \dfrac{ - 12}{ - 6}  = 2

and

\bf\implies \:x = \dfrac{ - 36}{ - 6}  = 6

Verification :-

Given expression is

\rm :\longmapsto\:\dfrac{x + y - 8}{2}  = \dfrac{x + 2y - 14}{3}  = \dfrac{3x - y}{4}

On substituting the values of x and y, we have

\rm :\longmapsto\:\dfrac{2+ 6 - 8}{2}  = \dfrac{2 + 2(6) - 14}{3}  = \dfrac{3(2)- 6}{4}

\rm :\longmapsto\:\dfrac{8 - 8}{2}  = \dfrac{ - 12 + 12}{3}  = \dfrac{6- 6}{4}

\rm :\longmapsto\:0 = 0 = 0

Hence, Verified

Answered by XxitsmrseenuxX
1

Answer:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\dfrac{x + y - 8}{2}  = \dfrac{x + 2y - 14}{3}  = \dfrac{3x - y}{4}

Taking first and second member, we have

\rm :\longmapsto\:\dfrac{x + y - 8}{2}  = \dfrac{x + 2y - 14}{3}

\rm :\longmapsto\:3x + 3y - 24 = 2x + 4y - 28

\bf\implies \:x - y =  - 4 -  -  - (1)

Now, Taking second and third member, we have

\rm :\longmapsto\: \dfrac{x + 2y - 14}{3}  = \dfrac{3x - y}{4}

\rm :\longmapsto\:4x + 8y - 56 = 9x - 3y

\bf\implies \:5x - 11y =  - 56 -  -  - (2)

Now we have equations as

 \red{\rm :\longmapsto\:x - y =  - 4}

and

 \red{\rm :\longmapsto\:5x - 11y =  - 56}

The matrix form of the above equation is

\rm :\longmapsto\:\bigg[ \begin{matrix}1& - 1 \\ 5& - 11 \end{matrix} \bigg]\begin{gathered}\sf \left[\begin{array}{c}x\\y\end{array}\right]\end{gathered} = \begin{gathered}\sf \left[\begin{array}{c} - 4\\ - 56\end{array}\right]\end{gathered}

where,

 \red{\rm :\longmapsto\:A = \bigg[ \begin{matrix}1& - 1 \\ 5& - 11 \end{matrix} \bigg]}

 \red{\rm :\longmapsto\:B = \begin{gathered}\sf \left[\begin{array}{c} - 4\\ - 56\end{array}\right]\end{gathered}}

 \red{\rm :\longmapsto\:X = \begin{gathered}\sf \left[\begin{array}{c}x\\y\end{array}\right]\end{gathered}}

So,

\rm :\longmapsto\: |A| = \begin{array}{|cc|}\sf 1 &\sf  - 1  \\ \sf 5 &\sf  - 11 \\\end{array} =  - 11 + 5 =  - 6

\bf\implies \: |A|  \: \ne \: 0

It means, system of equations is consistent having unique solution.

So, Consider

\rm :\longmapsto\: D_1  = \begin{array}{|cc|}\sf  - 4 &\sf  - 1  \\ \sf  - 56 &\sf  - 11 \\\end{array}

\rm \:  =  \:44  - 56

\rm \:  =  \: -  \: 12

Now, Consider

\rm :\longmapsto\: D_2  = \begin{array}{|cc|}\sf 1 &\sf  - 4  \\ \sf 5 &\sf  - 56 \\\end{array}

\rm \:  =  \: - 56 - ( - 20)

\rm \:  =  \: - 56  + 20

\rm \:  =  \: - 36

Hence,

\bf\implies \:x = \dfrac{ - 12}{ - 6}  = 2

and

\bf\implies \:x = \dfrac{ - 36}{ - 6}  = 6

Verification :-

Given expression is

\rm :\longmapsto\:\dfrac{x + y - 8}{2}  = \dfrac{x + 2y - 14}{3}  = \dfrac{3x - y}{4}

On substituting the values of x and y, we have

\rm :\longmapsto\:\dfrac{2+ 6 - 8}{2}  = \dfrac{2 + 2(6) - 14}{3}  = \dfrac{3(2)- 6}{4}

\rm :\longmapsto\:\dfrac{8 - 8}{2}  = \dfrac{ - 12 + 12}{3}  = \dfrac{6- 6}{4}

\rm :\longmapsto\:0 = 0 = 0

Hence, Verified

Similar questions