Math, asked by thalaseelapravallika, 19 days ago

د Solve the following simultaneous equations. dx dy = 3x + 2y, + 5x + 3y = 0 dt di​

Answers

Answered by mathdude500
8

Appropriate Question :-

Solve the following simultaneous equations

\rm \: \dfrac{dx}{dt} = 3x + 2y \\

and

\rm \: \dfrac{dy}{dt} = 5x + 3y \\

\large\underline{\sf{Solution-}}

Let assume that

\rm \: \dfrac{d}{dt} = D \\

So, above equations can be rewritten as

\rm \: Dx = 3x + 2y \\

\rm \: Dx -  3x - 2y = 0 \\

\rm \: (D -  3)x - 2y = 0 -  -  - (1) \\

and

\rm \: Dy = 5x + 3y \\

\rm \: Dy -  5x - 3y = 0 \\

\rm \: (D - 3)y -  5x = 0  -  -  - (2)\\

Now, multiply equation (1) by D - 3 and (2) by 2, we get

\rm \: 2(D - 3)y -  10x = 0  -  -  - (3)\\

and

\rm \: (D -  3)^{2} x - 2(D - 3)y = 0 -  -  - (4) \\

On adding equation (3) and (4), we get

\rm \:  {(D - 3)}^{2}x - 10x = 0 \\

\rm \: ( {D}^{2} + 9 - 6D - 10)x = 0 \\

\rm \: ( {D}^{2} - 6D - 1)x = 0 \\

So, its Auxiliary equation is

\rm \:  {m}^{2} - 6m - 1 = 0 \\

\rm \: m = \dfrac{6 \:  \pm \:  \sqrt{36 + 4} }{2}  \\

\rm \: m = \dfrac{6 \:  \pm \:  \sqrt{40} }{2}  \\

\rm \: m = \dfrac{6 \:  \pm \: 2 \sqrt{10} }{2}  \\

\rm\implies \:m = 3 \:  \pm \:  \sqrt{10}

So, Solution is given by

\rm\implies \:\boxed{\rm{  \:\rm \: x = c_1 {e}^{(3 +  \sqrt{10}) \: t } + c_2 {e}^{(3 -  \sqrt{10}) \: t} }} \\

or

\rm\implies \:\boxed{\rm{  \:\rm \: x = {e}^{3t} \bigg( c_1 {e}^{(\sqrt{10}) \: t } + c_2 {e}^{( -  \sqrt{10}) \: t} \bigg)}} \\

Now, from equation (1) we have

\rm \: 2y = (D - 3)x \\

\rm \: 2y = Dx - 3x \\

\rm \: 2y = D(c_1 {e}^{(3 +  \sqrt{10}) \: t } + c_2 {e}^{(3 -  \sqrt{10}) \: t} ) - 3(c_1 {e}^{(3 +  \sqrt{10}) \: t } + c_2 {e}^{(3 -  \sqrt{10}) \: t} ) \\

\rm \: 2y = c_1 {e}^{(3 +  \sqrt{10}) \: t }(3 +  \sqrt{10})  + c_2 {e}^{(3 -  \sqrt{10}) \: t}(3 -  \sqrt{10}) - 3c_1 {e}^{(3 +  \sqrt{10}) \: t } - 3c_2 {e}^{(3 -  \sqrt{10}) \: t} \\

\rm \: 2y = c_1 {e}^{(3 +  \sqrt{10}) \: t }(3 +  \sqrt{10} - 3)  + c_2 {e}^{(3 -  \sqrt{10}) \: t}(3 -  \sqrt{10} - 3)  \\

\rm \: 2y =  \sqrt{10}  \: c_1 {e}^{(3 +  \sqrt{10}) \: t } \:  -  \sqrt{10}  \: c_2 {e}^{(3 -  \sqrt{10}) \: t}  \\

\rm\implies \:y = \dfrac{ \sqrt{10} }{2}\bigg(c_1 {e}^{(3 +  \sqrt{10}) \: t } -  c_2 {e}^{(3 -  \sqrt{10}) \: t} \bigg)

or

\rm\implies \:y = \dfrac{ \sqrt{10} }{2} \:  {e}^{3t} \bigg(c_1 {e}^{(\sqrt{10}) \: t } -  c_2 {e}^{(-  \sqrt{10}) \: t} \bigg)

Similar questions